FINAL GROUNDWATER MONITORING REPORT FIRST QUARTER 2006 PACIFIC AIRMOTIVE CORPORATION 2940 AND 3003 NORTH HOLLYWOOD WAY BURBANK, CALIFORNIA

Prepared for:

Prepared by:

Lisa A. Hamilton, P.G.

Manager, MidAtlantic/Southeast/Western Regions

GE 640 Freedom Business Center King of Prussia, PA 19406

T 610-992-7885 F 610-992-7898 Lisa.Hamilton@corporate.ge.com

May 31, 2006

Ms. Rachel Loftin Remedial Project Manager US. EPA, Pacific Southwest Region - 9th Floor Superfund Division, SFD-7-4 75 Hawthorne Street San Francisco, CA 94105

Dear Rachel:

Enclosed please find one (1) copy of the Groundwater Monitoring Report, First Quarter 2006, Pacific Airmotive Corporation, 2940 and 3003 North Hollywood Way, Burbank, California. Please do not hesitate to contact me if you have any questions or comments.

Regards,

Lisa A. Hamilton

Manager, MidAtlantic/Southeast/Western Regions

CC

- Linda Gertler, LMC (w/out enclosure)
- Ken Martins, CH2M Hill (with enclosure)
- Dixon Oriola, LARWQCB (with enclosure)
- Alex Lapostol, E2 (with enclosure)

Final **GROUNDWATER MONITORING REPORT FIRST QUARTER 2006** PACIFIC AIRMOTIVE CORPORATION 2940 AND 3003 NORTH HOLLYWOOD WAY **BURBANK, CALIFORNIA**

May 2006

TC# 17653-0601

PREPARED FOR:

Lockheed Martin Corporation Corporate Energy, Environmental Safety and Health Burbank, CA

PREPARED BY:

Tetra Tech, Inc. 3475 East Foothill Boulevard Pasadena, CA 91107

Thomas Rauls

Deputy Program Manager

Stephen Anderson, P.G., O Principal Hydrogeologist Thomas Rauls

Project Manager

TETRA TECH, INC. 3475 East Foothill Blvd. Pasadena CA 91107 (626) 351-4664 FAX (626) 351-5291

TABLE OF CONTENTS

			Page
1.0	INTF	RODUCTION	1
	1.1	Site Location and Description	
	1.2	Objective	
	1.3	Report Organization	
2.0	SUB	SURFACE CONDITIONS	4
	2.1	Geology	4
	2.2	Hydrogeology	4
3.0	DES	CRIPTION OF HISTORICAL AREA OF CONCERN	6
4.0	GRO	OUNDWATER MONITORING PROCEDURES	7
	4.1	Groundwater Level Measurements	7
	4.2	Well Development	8
	4.3	Well Purging and Sampling	8
	4.4	Laboratory Analysis	9
5.0	GRO	OUNDWATER ANALYTICAL RESULTS	10
	5.1	VOC Analytical Results	
	5.2	Emergent Chemicals Analytical Results	
	5.3	Dissolved Iron and Manganese Analytical Results	10
	5.4	Inorganics Analytical Results	
	5.5	Cations Analytical Results	
	5.6	Title 22 Metals Analytical Results	
	5. 7	Data Verification and Validation	19
6.0	REFI	ERENCES	20

TABLE OF CONTENTS (continued)

	<u>Pa</u>	<u>ge</u>
	List of Tables	
Table 3-1	Historical Analysis from 1987 – 1989	6
Table 3-2	Historical Analysis from 1992 – 1995	
Table 4-1	Groundwater Elevations	
Table 5-1	Summary of Detected VOCs Analytical Results EPA Method 8260B	12
Table 5-2	Emergent Chemicals Analytical Results	13
Table 5-3	Dissolved Metals Analytical Results EPA Method 6010B/7470A	14
Table 5-4	Inorganics Analytical Results	15
Table 5-5	Cations Analytical Results	16
Table 5-6	Title 22 Metals Analytical Results EPA Method 6010B/7470A	17
	List of Figures	
Figure 1	BOU Boundary Map	
Figure 2	PAC Well Location Map	
Figure 3	Groundwater Contour Map	
	List of Appendices	
Appendix A	Field Data Log Sheets	
Appendix B	Laboratory Analytical Data Reports	
Annendiy C	Quality Assurance/Quality Control Summary	

1.0 INTRODUCTION

On behalf of Lockheed Martin Corporation (LMC), Tetra Tech Inc. (Tetra Tech) has prepared this groundwater monitoring report for two Pacific Airmotive Corporation (PAC) properties within the Burbank Operable Unit (BOU) in Burbank, California (see Figure 1). LMC is performing work requested by the U.S. Environmental Protection Agency (EPA) in a letter directed to General Electric (GE) dated October 20, 2005 due to a settlement agreement between PAC, an indirect wholly-owned subsidiary of GE, and LMC.

In a letter dated October 20, 2005, the EPA requested GE to initiate four quarters of groundwater sampling of the eight (8) existing wells at the PAC properties based on previous facility operations, detection of constituents, lack of current groundwater results, and recent regulatory concerns related to potential sources associated with emergent chemicals within the BOU. The EPA required analysis of the groundwater for volatile organic compounds (VOCs), 1,2,3-trichloropropane (1,2,3-TCP), Title 22 metals, including thallium and dissolved (total) chromium, hexavalent chromium, 1,4-dioxane, N-Nitrosodimethylamine (NDMA), perchlorate, nitrate/nitrite, common cations and anions, dissolved oxygen, sulfide, and dissolved iron and manganese.

1.1 SITE LOCATION AND DESCRIPTION OBJECTIVE

The PAC properties are located at 2940 and 3003 North Hollywood Way within the north-central portion of the BOU. The property at 2940 North Hollywood Way was identified as the Main Facility, and the property at 3003 North Hollywood Way was identified as the Jet Engine Test Cell Facility. Both facilities were historically associated with the manufacturing, design, and repair of aircrafts and aircraft engines. Structures located on both PAC properties are currently vacant.

1.2 OBJECTIVE

The purpose of this groundwater monitoring report is to comply with the provisions of the EPA October 20, 2005 letter. The objective of this monitoring report is to present

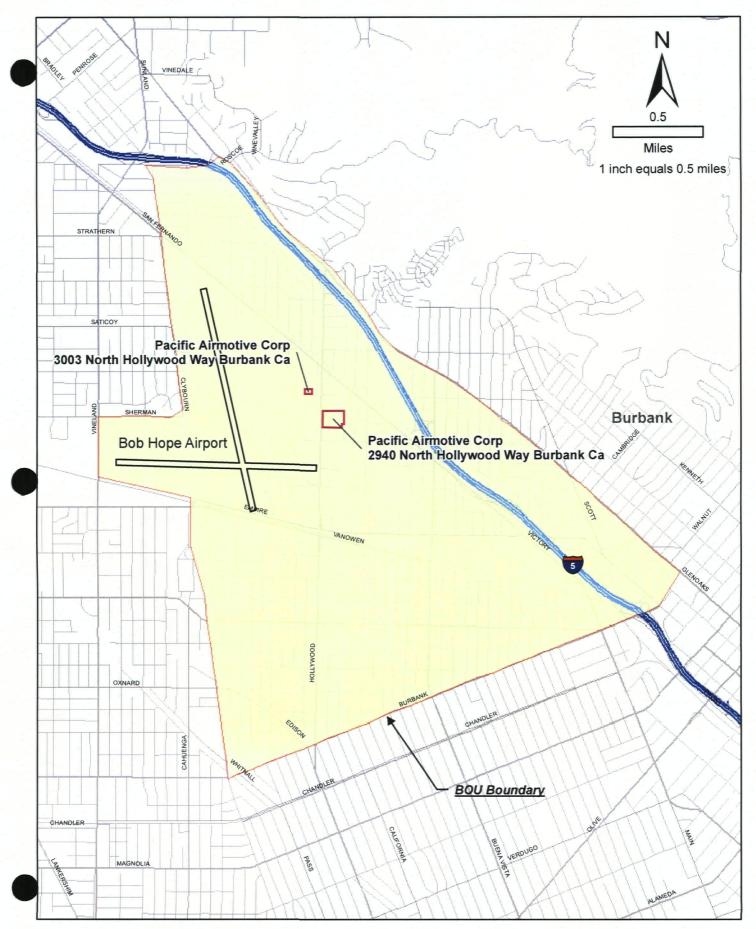


Figure 1 - BOU Boundary Map

groundwater data collected during the First Quarter 2006. The groundwater data is being collected to assist the EPA in assessing the current groundwater quality and conditions at the above mentioned monitoring wells and within the BOU. The quarterly monitoring report presents field, laboratory analytical results, and quality control data collected during groundwater level and water quality monitoring.

1.3 REPORT ORGANIZATION

The First Quarter 2006 quarterly groundwater monitoring report has been organized into the following six (6) sections:

- Section 1. <u>Introduction</u>: introduces the project and presents the objectives and report format.
- Section 2. <u>Subsurface Conditions</u>: presents the site geologic and hydrogeologic setting.
- Section 3. <u>Description of Historical Areas of Concern</u>: identifies the areas of groundwater concern beneath the PAC properties.
- Section 4. <u>Groundwater Monitoring Procedures</u>: summarizes the groundwater monitoring activities, groundwater measurements, and laboratory analysis conducted.
- Section 5. <u>Groundwater Analytical Results</u>: discusses groundwater monitoring results.
- Section 6. <u>References</u>: lists the references used to prepare this quarterly groundwater monitoring report.

2.0 SUBSURFACE CONDITIONS

2.1 GEOLOGY

The PAC properties are located in the southeastern portion of the San Fernando Valley (SFV) between the Santa Monica and Verdugo mountains. The SFV is located on the northwestern block of the Los Angeles Basin within the Transverse Ranges Geomorphic Province, an east-west trending unit composed of subparallel ranges separated by alluviated, synclinal valleys and prominent faults. The SFV is bordered to the north by the Santa Susana and San Gabriel mountains, to the east by the Verdugo Mountains, to the south by the Santa Monica Mountains, and to the west by the Simi Hills. These uplands are composed of crystalline bedrock of Precambrian to Mesozoic in age and sedimentary units from Cretaceous to Pleistocene in age. The crystalline bedrock and sedimentary units were eroded from the uplands during the Quaternary Period and deposited as more than 2,000 feet of alluvium in the SFV. The only major structural feature within close proximity to the PAC properties is the Verdugo Fault, which is approximately one mile to the northeast and trends northwesterly along the base of the Verdugo Mountains (Tetra Tech, 2006).

2.2 HYDROGEOLOGY

The PAC properties are located within the San Fernando Basin (SFB), one (1) of four (4) distinct groundwater basins that encompass the entire watershed of the Los Angeles River and its tributaries within the SFV (also known as the Upper Los Angeles River Area – ULARA). Groundwater within the eastern portion of the SFB flows mainly through two sedimentary units: 1) Older Alluvium of Pleistocene age and 2) Younger Alluvium of Holocene age. The Older Alluvium is comprised of sand, gravel, and boulders in the northwestern portion of the BOU to interbedded silt and sand in the eastern and southern portions of the BOU. The Younger Alluvium is comprised of coarse sand, gravel, and cobbles interbedded with finer-grained units of sand, silty sand, sandy silt, silty clay, and minor gravelly sand. Groundwater flow within the Older Alluvium has been observed to

be locally semi-confined to confined. The Younger alluvium is generally unconfined to semi-confined, depending upon the location and thickness of fine grained interbeds (Tetra Tech, 2006).

The aquifer in the Younger Alluvium within the BOU has been divided into five hydrostratigraphic units (HSU) based on electrical resistivity responses in geophysical logs (Hargis & Associates, 1991; Simon Hydro-Search, 1993. The five HSUs of the Younger Alluvium are identified from upper to lower as A', X, A, Y, and B. The A', A, and B units are generally composed of coarser-grained material (coarse sands, gravels, and cobbles). The X and Y HSUs separate the three (A', A, B) HSUs listed above and consist of relatively finer-grained material including sand, silty sand, and silt. Based on the stratigraphic position of the units and the groundwater gradient, the A', X, or A HSU may locally represent water table conditions depending on geographic location within the project area.

Groundwater flow direction in the SFB is generally toward the southeast. Groundwater velocities in the BOU range from approximately 300 to 900 feet per year (ULARA, 2005).

3.0 DESCRIPTION OF HISTORICAL AREAS OF CONCERN

After reporting a jet fuel spill to the Los Angeles Regional Water Quality Control Board (LA-RWQCB) in 1987, PAC agreed to install MW-1 and MW-2 at the Jet Engine Test Facility downgradient of the location of the fuel spill. In 1992, in an effort by the LA-RWQCB to assess the groundwater analytes underlying the PAC properties, monitoring well MW-3 was installed at the Jet Engine Test Cell Facility, and wells MW-4 through MW-8 were installed at the Main Facility (see Figure 2).

The EPA issued a Unilateral Administrative Order (UAO) in 1994 which required PAC to perform soil and groundwater investigations. As part of the soil investigation, PAC conducted soil gas surveys across the PAC properties to assess the nature and extent of vapor and non-vapor phase analytes in the unsaturated zone. Since 1997, when PAC became an indirect wholly owned subsidiary of GE, PAC, through GE technical and legal representatives acting on its behalf, has been working with the LA-RWQCB to further investigate and remediate PAC properties (Tetra Tech, 2006).

Semi-annual groundwater monitoring from July 1987 through January 1989 indicated elevated levels of trichloroethene (TCE) and tetrachloroethene (PCE) in monitoring wells MW-1 and MW-2 (see Table 3-1). Groundwater monitoring from June 1992 through April 1995 showed PCE and TCE concentrations exceeding regulatory maximum contaminant levels (MCLs) of 5 micrograms per liter (μ g/L) in wells MW-3 through MW-8 (see Table 3-2). Monitoring wells MW-1 and MW-2 were both dry during this time period.

Figure 2 - PAC Wells Location Map

Table 3-1 Historical Analysis From 1987 – 1989 (reported in µg/L)

	6/1	8/87	12/2	9/87	6/14	4/88	12/15/88		
	PCE	TCE	PCE	TCE	PCE	TCE	PCE	TCE	
MCL	5	5	5	5	5	5	5	5	
Composite of MW-1 & MW-2	130	32							
MW-1	130*	32*	67	24	160	31	75	12	
MW-2	130*	32*	190	41	200	33	130	15	

Notes:

All concentrations in ug/L

Bold - Result above MCL

Table 3-2 Historical Analysis From 1992 – 1995 (Reported in μg/L)

Well ID	9/15-	16/92	12/16	-19/92	7/19-	20/94	12/25	-26/94	1/30-31/95	
Well ID	PCE	TCE	PCE	TCE	PCE	TCE	PCE	TCE	PCE	TCE
MCL	5	5	5	5	5	5	5	5	5	5
MW-1	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
MW-2	dry	dry	dry	dry	dry	dry	dry	dry	dry	dry
MW-3	39	11	47	12	18	6.4	58	8.8	63	7.8
MW-4	460	46	400	41	22	6.3	25	3.6	13	2.2
MW-5	2100	440	64	13	40	8.9	150	24	49	6.9
MW-6	910	250	490	120	39	7.4	1300	170	800	110
MW-7	87	18	420	49	43	11	2000	88	490	19
MW-8	1700	160	1200	94	21	5.1	1800	170	1800	130

Notes: **Bold** - Result above MCL

^{*} Result based on composite sample

4.0 GROUNDWATER MONITORING PROCEDURES

4.1 **GROUNDWATER LEVEL MEASUREMENTS**

Water levels in the eight (8) monitoring wells were measured using a water level meter consisting of a liquid sensor attached to a measuring tape that was lowered down into the well until water was encountered. Water level measurements were recorded on well purging forms (see Appendix A) and are presented in Table 4-1. Groundwater monitoring wells MW-1 and MW-2 were dry. Groundwater elevation contours are shown on Figure 3. The groundwater flow direction is to the east. Based upon available boring logs, MW-4 through MW-8 are located in the water table.

Table 4-1 **Summary of Groundwater Elevations**

Well Number	HSU	Top of Casing (TOC) Elevation (feet msl)	Groundwater Depth from TOC (feet)	Groundwater Elevation (feet msl)
MW-1	NA	NA	dry	dry
MW-2	NA	NA	dry	dry
MW-3	NA	NA	244.30	NA
MW-4	A*	700.15	230.25	469.90
MW-5	A*	701.96	232.04	471.92
MW-6	A*	700.95	230.50	470.45
MW-7	A*	696.16	228.06	468.10
MW-8	A*	NA	233.55	NA

Note: * Based upon boring logs.

HSU – Hydrostatic unit. TOC – Top of casing.

msl - Mean sea level.

NA - Not available.

Figure 3 - First Quarter 2006 WT HSU's Groundwater Elevation, PAC

4.2 WELL DEVELOPMENT

Because groundwater monitoring and sampling had not been conducted at the eight (8) PAC wells since 1995, well development was required to optimize groundwater production within each well prior to sampling the wells in the First Quarter of 2006. Initial measurements of water level, well depth, and headspace air monitoring readings for volatile organic compounds (VOCs) using a photoionization detector (PID) were recorded on a field data log sheet. Surging was conducted by raising and lowering a bailer in wells MW-3 through MW-8 for approximately 10 minutes. Then, using the same bailer, approximately 100 gallons of water was bailed from each well. The purged water was containerized in 55-gallon drums and left onsite for proper profiling and disposal. Groundwater parameters including water temperature, pH, conductivity, dissolved oxygen, and turbidity were measured throughout the bailing process using a field water quality monitoring system. Stabilization of these parameters served as an indication of groundwater representative of the formation. After parameter stabilization was achieved, bailing was stopped. Water level measurements were recorded again at the completion of the development activities.

4.3 WELL PURGING AND SAMPLING

Prior to collecting the groundwater samples, a minimum of three well volumes was purged from monitoring wells MW-3, MW-5 through MW-8 using a submersible pump. Groundwater monitoring wells MW-1 and MW-2 were dry and MW-4 was under standing water. EPA agreed that MW-4 would not be sampled during the event and would be sampled in subsequent quarterly events. Water temperature, pH, conductivity, dissolved oxygen, and turbidity were measured throughout the purging process using a field water quality monitoring system. Stabilization of these parameters served as an indication of water representative of the formation, and their values were recorded on well purging forms (see Appendix A). The purged water was containerized in 55-gallon drums and staged onsite for proper profiling and disposal.

The groundwater samples were collected using a down-hole submersible pump for monitoring wells MW-3, MW-5 through MW-8. Groundwater samples were collected

from a nozzle attached to the pump hose and placed directly into sample containers provided by the laboratory. Decontamination procedures were followed after each monitoring well was sampled to avoid cross-contamination between wells. The water samples were placed on ice in a cooler to maintain a temperature of ⁺/. 4°C pending delivery to Calscience Environmental Laboratories, Inc., a State of California certified laboratory for analysis. A completed chain-of-custody form accompanied the shipment of samples to the laboratory to ensure accountability for the samples from the time of collection to the time of analysis.

4.4 LABORATORY ANALYSIS

Groundwater samples were collected from the five (5) groundwater monitoring wells at the PAC facility. Samples analyzed for dissolved metals were filtered in the field using a disposable filter.

The EPA has requested that groundwater samples from the PAC wells be analyzed for specific constituents using analytical methods consistent with those of the BOU groundwater sampling events as follows:

- ➤ VOCs, including MTBE, using EPA Method 8260B;
- > 1,2,3-TCP, using EPA Method 504.1;
- ➤ Title 22 metals, including thallium and dissolved (total) chromium, using EPA Method 6010B/7470A;
- > Hexavalent chromium, using EPA Method 218.6;
- > 1,4-dioxane, using GC/SM EPA Method 8270 SIM;
- ➤ NDMA, using EPA Method 1625C(M);
- > Perchlorate, using EPA Method 314.0;
- > Nitrate/nitrite, using EPA Method 300.0;
- > Cations, using EPA Method 6010B;

- > Anions, using EPA Method 300.0;
- Dissolved oxygen, using EPA Method SM 4500-O G;
- ➤ Sulfide, using EPA Method 376.2; and
- Dissolved iron and manganese using EPA 3005A Filter/EPA 200.8.

5.0 GROUNDWATER ANALYTICAL RESULTS

Based on the data collected during the First Quarter 2006 groundwater sampling event, compounds were reported in the groundwater samples above their respective MCL or California drinking water notification level (CDWNL). The MCL or CDWNL concentrations are based on the lowest value in "A Compilation of Water Quality Goals, California Regional Water Quality Control Board, Central Valley Region," dated September 2004. Copies of the laboratory analytical data reports are included in Appendix B. A summary of the analytes detected is provided in Tables 5-1 through 5-6. A summary of the analytical results is presented in the following subsections.

5.1 VOC ANALYTICAL RESULTS

Groundwater samples were collected from five (5) groundwater monitoring wells and analyzed for VOCs. A summary of the analytical results are presented in Table 5-1 and discussed below:

- > Acetone was detected in one (1) groundwater sample (MW-5) and estimated in one (1) groundwater sample (MW-7) with concentrations of 13 μg/L and 9.8 μg/L, respectively.
- **Bromo-dichloromethane** was estimated in one (1) groundwater samples (MW-5) with a concentration of 0.33 μ g/L.
- > Carbon Tetrachloride was detected in two (2) groundwater samples (MW-5 and MW-6) with concentrations of 1.1 μg/L and 2.2 μg/L, respectively.
- > Chloroform was detected in two (2) groundwater samples (MW-5 and MW-6) with concentrations of 1.6 μg/L (MW-5) and 2.0 μg/L (MW-6) and estimated in three (3) groundwater samples (MW-3, MW-7, and MW-8) with concentrations ranging from 0.61 μg/L (MW-8) to 0.89 μg/L (MW-3).
- > Methylene Chloride was estimated in one (1) groundwater sample (MW-8) with a concentration of 3.6 μg/L.

- > Tetrachloroethene was detected in all groundwater samples with concentrations ranging from 29 μg/L (MW-3) to 130 μg/L (MW-6).
- > 1,2-Dichloroethane was estimated in two (2) groundwater samples (MW-5 and MW-6) with concentrations of 0.32 μg/L (MW-5) and 0.43 μg/L (MW-6), respectively.
- > 1,1-Dichloroethane was detected in three (3) groundwater samples (MW-3, MW-5, and MW-6) with concentrations ranging from 1.1 μg/L (MW-3) to 1.9 μg/L (MW-5) and estimated in two (2) groundwater samples (MW-7 and MW-8) with concentrations of 0.69 μg/L and 0.49 μg/L, respectively.
- > 1,1,2-Trichloro-1,2,2-trifluoroethane was estimated in all groundwater samples with concentrations ranging from 0.74 μg/L (MW-6) to 1.8 μg/L (MW-5).
- > Trichloroethene was detected in all groundwater samples with concentrations ranging from 8.3 μg/L (MW-3) to 69 μg/L (MW-6).

A review of the VOC analytical data reveals that three (3) compounds were detected above their respective MCL. Carbon tetrachloride was detected above the MCL of 0.5 μ g/L in groundwater samples MW-5 (1.1 μ g/L) and MW-6 (2.2 μ g/L). Tetrachloroethene was detected above the MCL of 5 μ g/L in all groundwater samples ranging from 29 μ g/L (MW-3) to 130 μ g/L (MW-6). Trichloroethene was detected above the MCL of 5 μ g/L in all groundwater samples ranging from 8.3 μ g/L (MW-3) to 69 μ g/L (MW-6).

Table 5-1 Summary of Detected VOCs Analytical Results EPA Method 8260B (reported in µg/L)

Well ID	Acetone	Bromo-dichloromethane	Carbon Tetrachloride	Chloroform	Chloromethane	Methylene Chloride	Tetrachloroethene	1,2-Dichloroethane	1,1-Dichloroethene	1,1,2-Trichloro-1,2,2- trifluoroethane	Trichloroethene
MCL	NA	80 ¹	0.5 ¹	80 ¹	NA	NA	5 ²	0.5 ²	6 ²	1,200 ²	5 ²
MW-3	<6.1	<0.27	<0.42	0.89 ^J	<1.8	<2.6	29	<0.22	1.1	_ 1.1 ^J	8.3
MW-5	13	0.33 ^J	1.1	1.6	<1.8	<2.6	75	0.32 ^J	1.9	1.8 ^J	32
MW-6	<6.1	<0.27	2.2	2	<1.8	<2.6	130	0.43 ^J	1.8	0.74 ^J	69
MW-7	9.8 ³	<0.27	<0.42	0.8 ^J	<1.8	<2.6	49	<0.22	0.69 ^J	0.86 ^J	18
MW-8	<6.1	<0.27	<0.42	0.61	<1.8	3.6 ^{J,B}	54	<0.22	0.49 ^J	0.79 ^J	23

Note:

- 1 US EPA MCL
- ² California Primary MCL
- Analyte was present in the associated method blank.
- Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
 - MCL = Maximum contaminant level.
 - NA = Not available.

5.2 EMERGENT CHEMICALS ANALYTICAL RESULTS

Groundwater samples were collected from the five (5) groundwater monitoring wells and analyzed for 1,4-dioxane, NDMA, and 1,2,3-TCP. A summary of the analytical results are presented in Table 5-2 and discussed below:

- > 1,4-Dioxane was not detected in any of the groundwater samples above the laboratory method detection limit.
- > NDMA was detected in all groundwater samples with concentrations ranging from 0.0071 μg/L (MW-7) to 0.170 μg/L (MW-6).
- > 1,2,3-TCP was detected in all groundwater samples with concentrations ranging from 0.018 μ g/L (MW-7) to 0.23 μ g/L (MW-3).

A review of the emergent chemical analytical data reveals that two (2) compounds were detected above their respective CDWNL. NDMA was detected above the CDWNL of

 $0.01~\mu g/L$ in groundwater samples MW-5, MW-6 and MW-8. The compound 1,2,3-TCP was detected above the CDWNL of $0.005~\mu g/L$ in all five groundwater samples.

Table 5-2
Emergent Chemicals Analytical Results
(results in μg/L)

Well ID	1,4-Dioxane by EPA Method 8270 SIM	NDMA by EPA Method 1625C(M)	1,2,3-TCP by EPA Method 504.1
CDWNL	3	0.01	0.005
MW-3	<0.40	0.018	0.23
MW-5	<0.40	0.064	0.14
MW-6	<0.40	0.170E	0.02
MW-7	<0.40	0.0071	0.018
MW-8	<0.40	0.081	0.028 ^B

Moto

^B Analyte was present in the associated method blank. CDWNL = California Drinking Water Notification Level NDMA = N-Nitrosodimethylamine.

1,2,3-TCP = 1,2,3-Tricloropropane.

MCL = Maximum contaminant level.

5.3 DISSOLVED IRON AND MANGANESE ANALYTICAL RESULTS

Groundwater samples were collected from five (5) groundwater monitoring wells and analyzed for dissolved iron and manganese. A summary of the analytical results are presented in Table 5-3 and below.

- ➤ **Dissolved Iron** was estimated in all groundwater samples with concentrations ranging from 0.0409 mg/L (MW-7) to 0.0716 mg/L (MW-8).
- ➤ Dissolved Manganese was detected in two (2) groundwater samples (MW-3, and MW-6) with concentrations 0.00132 mg/L and 0.00177, respectively and estimated in three (3) groundwater samples (MW-5, MW-7, and MW-8) with concentrations ranging from 0.000447 mg/L (MW-7) to 0.000934 mg/L (MW-8).

A review of the dissolved iron and manganese analytical results reveal that groundwater samples did not contain concentrations that exceeded their respective MCL.

Table 5-3
Dissolved Metals Analytical Results
EPA Method 6010B/7470A
(results in mg/L)

Well ID	Iron	Manganes e
MCL	0.3 ¹	0.05
MW-3	0.0436 ^{J,B}	0.00132
MW-5	0.0483 ^{J,B}	0.000801 ^J
MW-6	0.0509 ^{J,B}	0.00177
MW-7	0.0409 ^{J,B}	0.000447 ^J
MW-8	0.0716 ^J	0.000934 ^J

Note: 1 US EPA MCL

B Analyte was present in the associated method blank.

5.4 INORGANICS ANALYTICAL RESULTS

Groundwater samples were collected from five (5) groundwater monitoring wells and analyzed for Hexavalent chromium, perchlorate, and anions. A summary of the analytical results are presented in Table 5-4 and discussed below:

- ➤ Hexavalent Chromium was detected in all groundwater samples with concentrations ranging from 0.0017 mg/L (MW-3 and MW-7) to 0.003 mg/L (MW-6).
- ➤ Chloride was detected in all groundwater samples with concentrations ranging from 39 mg/L (MW-6) to 44 mg/L (MW-7).
- > Nitrite was not detected in any of the groundwater samples above the laboratory reporting limit.
- Nitrate was detected in all groundwater samples with concentrations ranging from 11 mg/L (MW-8) to 12 mg/L (MW-3, MW-5, MW-6, and MW-7).
- > Sulfate was detected in all groundwater samples with concentrations ranging from 72 mg/L (MW-3) to 78 mg/L (MW-5, MW-6, and MW-7).
- > Sulfide was not detected in any of the groundwater samples above the laboratory reporting limit.
- ➤ Perchlorate was estimated in one (1) groundwater sample (MW-5) with a concentration of 0.00077 mg/L.
- ➤ **Dissolved Oxygen** was detected in all groundwater samples with concentrations ranging from 7.23 mg/L (MW-6) to 7.59 mg/L (MW-3).

J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. MCL = Maximum Contaminant Level.

A review of the inorganic analytical data reveals that one (1) compound was detected above the water quality objective. Nitrate was detected above the water quality objective of 10 mg/L in all groundwater samples.

Table 5-4
Inorganics Analytical Results
(results in mg/L)

Well ID	Hexavalent Chromium	Chloride	Nitrite	Nitrate	Sulfate	Sulfide	Perchlorate	Dissolved Oxygen
Regulatory Action Level	0.05 1	250 ²	1 2	10 ²	250 ²	NA	4 ³	NA
MW-3	0.0017 ^B	43	< 0.015	12	72	<0.042	<0.00059	7.59
MW-5	0.0019 ^B	42	<0.015	12	78	<0.042	0.00077 ^J	7.26
MW-6	0.003 ^B	39	< 0.015	12	78	<0.042	<0.00059	7.23
MW-7	0.0017 ^B	44	< 0.015	12	78	<0.042	<0.00059	7.44
MW-8	0.0018 ^B	43	< 0.015	11	75	< 0.042	<0.00059	7.24

Note:

5.5 CATIONS ANALYTICAL RESULTS

Groundwater samples were collected from five (5) groundwater monitoring wells and analyzed for cations. A summary of the analytical results are presented in Table 5-5 and below.

- ➤ Calcium was detected in all groundwater samples with concentrations ranging from 102 mg/L (MW-7 and MW-8) to 115 mg/L (MW-6).
- ➤ Magnesium was detected in all groundwater with concentrations ranging from 30.6 mg/L (MW-5) to 34.0 mg/L (MW-7).
- ➤ Potassium was detected in all groundwater samples with concentrations ranging from 5.22 mg/L (MW-8) to 5.97 mg/L (MW-6).
- > Sodium was detected in all groundwater samples with concentrations ranging from 37.8 mg/L (MW-5) to 39.6 mg/L (MW-7).

¹ Hexavalent chromium currently regulated using MCL for total chromium

California Secondary MCL
 California Drinking Water Notification Level

Analyte was present in the associated method blank.

J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated. NA = Not available.

Action levels or MCLs have not been established for cations.

Table 5-5
Cations Analytical Results
EPA Method 6010
(results in mg/L)

Well ID	Calcium	Magnesiu m	Potassium	Sodium
MCL	NA	NA	NA	NA
MW-3	106	32.6B	5.8	39.2B
MW-5	108	31.3B	5.95	38.6B
MW-5A	107	30.6B	5.82	37.8B
MW-6	115	31.9B	5.97	39.0B
MW-7	102	34.0B	5.58	39.6B
MW-8	102	31.0B	5.22	38.2B

Note: ^B Analyte was present in the associated method blank.

MCL = Maximum contaminant level.

NA = Not available.

5.6 TITLE 22 METAL ANALYTICAL RESULTS

Groundwater samples were collected from the five (5) groundwater monitoring wells and analyzed for Title 22 metals. A summary of the analytical results are presented in Table 5-6 and only metal analytes detected above the reporting limit are listed below:

- **Barium** was detected in all groundwater samples with concentrations ranging from 141 μ g/L (MW-8) to 150 μ g/L (MW-6 and MW-7).
- **Chromium** was detected in all groundwater samples with concentrations ranging from 7.71 μ g/L (MW-3) to 10.2 μ g/L (MW-6).
- \triangleright Zinc was detected in all groundwater samples with concentrations ranging from 13 μ g/L (MW-5) to 26.8 μ g/L (MW-8).

A review of analytical results for metals shows that they are all below their respective MCL.

Table 5-6 **Title 22 Metals Analytical Results EPA Method 6010B/7470A** (results in μ g/L)

Well ID	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MCL	6	10	1000	4	5	50	NA	1000	15	2	NA	100	50	100	2	NA	5,000
MW-3	<2.09	<3.08	144	<0.176	<0.35	7.71	<0.696	2.44J,B	<2.36	< 0.0672	3.26J,B	<1.37	<2.95	<0.4	<2.33	4.45J	26.4B
MW-5	<2.09	<3.08	144	<0.176	<0.35	8.51	< 0.696	2.9J,B	3.37J	< 0.0672	4.27J,B	<1.37	6.69J	<0.4	<2.33	4.01J	13B
MW-6	<2.09	<3.08	150	<0.176	< 0.35	10.2	<0.696	3.65J,B	<2.36	<0.0672	2.59J,B	1.51J	5.12J	<0.4	<2.33	3.61J	14.7B
MW-7	<2.09	8.51J	150	<0.176	< 0.35	8.3	<0.696	5.16B	5.98J	<0.0672	3.52J,B	<1.37	<2.95	<0.4	<2.33	4.82J	17.4B
MW-8	<2.09	<3.08	141	<0.0010	<0.0050	9.64B	<0.696	<1.34	<2.36	<0.0672	<0.80	<1.37	7.12J	<0.4	<2.33	3.83J,B	26.8

NA = Not available.

Note: * California Drinking Water Notification Level

B Analyte was present in the associated method blank.

J Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

MCL = Maximum contaminant level.

5.7 DATA VERIFICATION AND VALIDATION

Laboratory data underwent verification and validation including laboratory control samples (LCS), matrix spike duplicates (MSD), and method blanks. All samples received by the laboratory were analyzed within holding times specified by USEPA SW-846. Appendix C presents a summary of the quality control and quality assurance (QA/QC).

6.0 REFERENCES

- Hargis & Associates, 1991. Installation of Groundwater Monitor Wells Along Vanowen Street, Lockheed Engineering and Science Company, Burbank, California.
- Simon Hydro-Search, 1993. Phase I Final Remedial Design Report, Burbank Operable Unit, Vols. V & VI prepared for LESAT, September 30, 1993.
- Tetra Tech, 2006. Groundwater Monitoring and Sampling Work Plan, Pacific Airmotive Corporation Properties Located at 2940 and 3003 North Hollywood Way, Burbank, California, March 2006.
- U.S. Environmental Protection Agency, October 20, 2005. Letter to General Electric Company.
- Watermaster (ULARA), 2005. Watermaster Service in the Upper Los Angeles River Area Los Angeles County 2003 2004 Water Year, Upper Los Angeles River Area, May 2005.

3475 E. Foothill Blvd. Pasadena, CA 91107 (626) 351-4664

TETRA TECH, INC. Fax (626) 351-5291

TC#:

WELL PURGING FORM Date: 3/2/06

Page

Project:

Client: Lockheed Martin Corporation Sampler IM TIKESECC

Monitoring Well ID: ※ とりい Duplicate ID:

Well Diameter:

Pump Specs. :

Sample Time:

Static Water Level (ft bloc):

Total Well Depth (ft): Water Column (ft):

Notes:

TOC to ground surface (ft):

TOC = top of casing (at notch/mark)

6 PUMB

WELL PURGING:

(multiplier)

(no. of volumes to purge)

Note: water column x multiplier = casing volume

1	911	DITY SA	LINITY	D	0	TOTA	L GAL.
	24.5		272		835 - A	. No ski	. ` i iks
	堻		80% A			易入	
	Ŗ.,	<u>52886 xees</u>	77711003				

TIME	TEMP (DEG C°)	EC	рН	TURBIDITY and COLOR,	SALINITY	DO	TOTAL GAL: PURGED
1530	2 0. 8	-883	7.69	and COLOR	0.04	10.81	Ó
1532.	20.2	.73/	7.55	618		10.54	10
1536	20.5	•73/	7.47	2 <i>5</i>)		10-11	20
1588	20,4	; 733	7.49	13/		10.05	30
1540	20.4	, 734	7.48	92	(1)	10.00	40
1549	30 .7	.733	7.47	65%		9.96	50
1544	20-5	•733	7.47	50		9.95	60
1646	20.J	,733	7.47.	25	0.04	9.95	70

adena, CA 91107 (626) 351-4684

TETRA TECH, INC. Fax (626) 351-5291

TC#:		175	97 -	03	
	Billion - Commercial of the Co	A	10 American	The Acres 1997	

Project: Burbank PAC WIELLS

Lockheed Martin Corporation Client:

WELL PURGING FORM Date: 3/29/06

Page

Sampler JIM 111KESECL

Monitoring Well ID: Duplicate ID:

Well Diameter:

Pump Specs. Sample Time:

Static Water Level (It bloc): Total Well Depth (ft); Water Column (ft):

TOC to ground surface (ft):

TOC = top of casing (at notch/mark)

WELL PURGING:

37, 22

Notes:

TIME	TEMP (DEG C7)	EC	PH	TURBIDITY and COLOR	SALINITY	70	TOTAL GAL PURGED
0945	20.0	.750	7.63	446	ø.b.3	11.25	0
0948	20.4	.747	7.46	348		10.90	10
0950	70.6	.748	7.43	245		10.92	20
0953	70.7	. 745	7:42	(60		1/02	30
0955	20.7	.740	7.41	8: <u>/</u>		11.20	40
0958	20.7	.746	7.41	.38		11.50	50
1000	20.6	, 743	7.41	30		11.35	60
0.03	20%	.742	7.40			11.21	20
10.05							> <i>5</i>

Monitoring Well ID:

Duplicate ID:

Well Diameter.

Pump Specs.

3475 E. Foothill Blvd. Pasadena, CA 91107 (626) 351-4684 Fax (626) 351-5291

≯ :			LL	U	9	<u> 1 4; ; .</u>
	- 3			7	;	30.46
·		252		<u> </u>	"y" - 5	. M.Z.N.,

TETRA TECH, INC.

TC#: Project:

Lockheed Martin Corporation Client:

Sampler JIM HIKESECC

Static Water Level (ft bloc): Total Well Depth (ft):

Page

Water Column (ft): TOC to ground surface (ft):

TOC = top of casing (at notch/mark)

x 230 vor 36.4 pv-p Sample Time:

WELL PURGING:

20.92 (1 casing volume)

Notes:

(no. of volumes to purge)

62.76 gals (total volume to purge)

TIME	TEMP (DEG C°)	EC	pH	TURBIDITY and COLOR	SALINITY	DO	TOTAL GAL. PURGED	To state
2080	18.5	0-75L	7.4 9	929	0-04	9.80	0]2
805	19.6	0.745	7.39	780	0.03	9.17	\$ (7)	7
0807	19.7	0.748	7.33	450	,	9.03	20	(
2810 ·	19.9	0-744	7.34	320		8.79	30	/
) 872	20.(0.745	732	222		8.89	40	ľ
218 c	20.1	0.746	7.32	/28		₽.93	50	
817	20.1*	0.744	7.34	80	V	8.99	BO	
9818	20.	0:743	7.33	38	003	9.11	65	
							40	
	**************************************						49	
					2,627			

Pasadena, CA 91107 (626) 351-4684 TETRA TECH, INC. Fax (628) 351-5291

UNDER 1 FOOT PLUS RAIN WATER

TC#:

Project:

Sampler JIH H(KESEL **Lockheed Martin Corporation** Client:

Monitoring Well ID: Static Water Level (ft btoc): Duplicate ID: Total Well Depth (ft): Well Diameter: Water Column (ft): 4p 23000CT 3"OIA Pump Specs.: TOC to ground surface (ft): Sample Time: TOC = top of casing (at notch/mark) WELL PURGING: Notes:

TIME	TEMP (DEG C°)	EC	pH	TURBIDITY and COLOR	SALINITY	DO	TOTAL GAL PURGED
							0
							10
							20
							30
							40
							50
							60
							70

3475 E. Foothill Blvd. Pasadens, CA 91107 (626) 351-4684

TETRA TECH.

TC#:

	·			. ~	, ,,,,,,	,,	*
x :	A 1977	1500 4	2. 100	Section .	799. 3		
	1.76		1000	4.38	S 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
×,		.45 . 49	7.2		and the second	1.72	
. · •		. N. 1			7	×	3
	_		: Mir. 76 4	4.6			
			11.534 6 11.5				<i>J</i>

Burbank PACWELLS Project:

Lockheed Martin Corporation Client:

WELL PURGING FORM Date: 3/30/66

Sampler JAM MIKESEL (LOCHAU 109

Monitoring Well ID: Duplicate ID:

Well Diameter.

Pump Specs. : Sample Time:

(weter column)

22.60 gala

301A

Static Water Level (ft bloc):

Total Well Depth (ft):

Water Column (it):

Notes:

TOC to ground surface (ft):

TOC = top of casing (at notch/mark)

WELL PURGING:

22.60 gals

(1 casing volume)

4 GPM

67-81 gals

(lotal volume to purge)

0805

38

€(

START PURGE

(no. of volumes to purge) (1 casing volume) Note: water column x multiplier 252291 TURBIDITY SALINITY DO TOTAL GAL pH TIME end COLOR **PURGED** 0805 490 0807 219 0800 0812 115 20.0 0815 0817 0820 10.895 0822

Duplicate ID:

Well Diameter:

Pump Specs.:

Sample Time:

3475 E. Foothill Blvd. Pasadena, CA 91107 (626) 351-4664 TETRA TECH, INC. Fax (628) 351-5291

TC#:

Monitoring Well ID: MW

Project: Burbank

Lockheed Martin Corporation Client:

WELL PURGING FORM Date: 3/30/06

Page ...

Static Water Level (It bloc): Total Well Depth (ft): Water Column (ft): 40 230 VOLT TOC to ground surface (ft): TOC = top of casing (at notch/mark) 4 GPM

Sampler JJH MIKESELC

WELL PURGING: 0.66 STARY PURPE-1010 Notes:

(1 casing volume) (no. of volumes to purge) Note: water column x multiplier - casing volume

252375 |TOTAL GAL TURBIDITY SALINITY DO TIME TEMP pH and COLOR PURGED (DEG C°) 9.90 0.04 003 203 10 4.00 0. 20 0-03 8 0-03 20 O Ö 0.03 50 0.03 9.35 0-750 60 O 20° 0-03 030 0.03 20-4

April 08, 2006

Neil Shukla Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Subject: Calscience Work Order No.: 06-03-1770

> Client Reference: **BOU Groundwater Monitoring 2006 (PAC Wells)**

> > / 17653-06-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/30/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres **Project Manager**

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Analytical Report

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/30/06

Work Order No:

06-03-1770

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Date

Date

0.0147

0.0100

Method:

EPA 6010B / EPA 7470A

0.000848

Units:

Date

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 2

QC Batch ID

Client Sample Nu	Number		Collected	Matrix Prep	ared Analy	zed QC B	atch ID			
MW-6			06-0	3-1770-1	03/30/06	Aqueous 03/3	0/06 03/3	1/06 06033	OLO4F	-98 -09
Comment(s):	-Results were eva	aluated to the	MDL, concentrat	tions >= to	the MDL but < RL, if f	ound, are qualified w	ith a "J" flag.			
	-Mercury was ana	alyzed on 3/31	/2006 3:22:19 P	M with bate	ch 060331L02F					
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF C	Qual Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	Qual
Antimony	ND	0.0150	0.00209	1	Mercury	ND	0.000500	0.0000672	1	
Arsenic	ND	0.0100	0.00308	1	Molybdenum	0.00259	0.00500	0.000800	1	J,B
Barium	0.150	0.010	0.000719	· 1	Nickel 1	0.00151	0.00500	0.00137	1	J
Beryllium	ND	0.00100	0.000176	1	Selenium	0.00512	0.0150	0.00295	1	J
Cadmium	ND	0.00500	0.000350	1	Silver	ND	0.00500	0.000400	1	
Chromium	0.0102	0.0050	0.000350	1	Thallium	ND .	0.0150	0.00233	1	
Cobalt	ND	0.00500	0.000696	1	Vanadium	0.00361	0.00500	0.000314	1	J

06-03-1770-2 03/30/06 Aqueous 203/30/06 03/31/06 060330L04F MW-3

Zinc

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

Lab Sample

-Mercury was analyzed on 3/31/2006 3:24:34 PM with batch 060331L02F

0.00134

0.00236

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	0.00209	1		Mercury	ND	0.000500	0.0000672	1	
Arsenic	ND	0.0100	0.00308	1		Molybdenum	0.00326	0.00500	0.000800	1	J,B
Barium	0.144	0.010	0.000719	1		Nickel	ND	0.00500	0.00137	1	
Beryllium	ND	0.00100	0.000176	1		Selenium	ND	0.0150	0.00295	1	
Cadmium	ND	0.00500	0.000350	1		Silver	ND	0.00500	0.000400	1	
Chromium	0.00771	0.00500	0.000350	1		Thallium	ND	0.0150	0.00233	1	
Cobalt	ND	0.00500	0.000696	1		Vanadium	0.00445	0.00500	0.000314	1	J
Copper	0.00244	0.00500	0.00134	1	J,B	Zinc	0.0264	0.0100	0.000848	1	В
Lead	ND	0.0100	0.00236	1							

Method Blank 099-04-008-2:415 NA Aqueous 03/31/06 03/31/06 060331L02F

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

DF Qual

1

<u>Parameter</u> Mercury

Copper

Lead

Result ND

0.00365

ND

0.00500

0.0100

RL 0.000500

MDL 0.0000672

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/30/06

Work Order No:

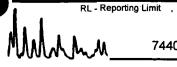
06-03-1770

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

EPA 6010B / EPA 7470A


Units:

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 2 of 2

Client Sample Nu	mber			ample nber		Date Collected	Matrix	Date Prepare		ate lyzed ⁽	QC Batch ID	
Method Blank			∰ 0974)1-003-5,	966	, NA	Aqueous	03/30/0	i6 ∤∤ 03/	31/06 🙏 (60330L04F	AT)
Comment(s):	-Results were eva	luated to the I	MDL, concentrat	ions >= to	o the N	ADL but < RL, if f	ound, are qu	alified with	a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Res	sult	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	0.00209	1		Molybdenum	0	.00126	0.00500	0.00080	0 1	J [*]
Arsenic	ND	0.0100	0.00308	1		Nickel	N	D	0.00500	0.00137	1	
Barium	ND	0.0100	0.000719	1		Selenium	N	D	0.0150	0.00295	i 1	
Beryllium	ND	0.00100	0.000176	1		Silver	N	ID	0.00500	0.00040	0 1	
Cadmium	ND	0.00500	0.000350	1		Thallium	0	.00242	0.0150	0.00233	, 1	J
Chromium	ND	0.00500	0.000350	1		Vanadium	N	ID	0.00500	0.00031	4 1	
Cobalt	ND	0.00500	0.000696	1		Zinc	0	.00158	0.0100	0.00084	8 1	J
Copper	0.00239	0.00500	0.00134	1	J	Lead	N	ID	0.0100	0.00236	1	

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

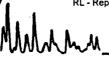
Work Order No:

Preparation:

Method: Units: 06-03-1770 EPA 3005A Filt.

EPA 6010B

03/30/06


mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Number				Sample mber		Date Collected	Matrix	Date Prepared	ı A	Date nalyzed	QC Batch ID	
MVV-6			06-0	3-1770-1		03/30/06	Aqueous	03/30/06		03/31/06	060330L04F	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Res	<u>ult R</u>	<u>L</u>	MDL	<u>DF</u>	Qua
Calcium	115	0.100	0.00932	1		Potassium		5.97).50	0.0561	1	
Magnesium	31.9	0.1	0.00328	1	В	Sodium	;	39.0 ().5	0.0192	2 1	E
MW-3			06-0	3-1770-2	7.	03/30/06	Aqueous	03/30/06		03/31/06	060330L04F	
<u>Parameter</u>	Result	<u>RL</u>	MDL.	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Res	<u>ult R</u>	<u>:L</u>	MDL	<u>DF</u>	Qua
Calcium	106	0.100	0.00932	1		Potassium		5.80).50	0.0561	1	i
Vfagnesium	32.6	0.1	0.00328	1	В	Sodium	;	39.2 ().5	0.0192	2 1	
Method Blank	OMENIAL ARTH		007	01-003-5	oee ×	N/A	Aqueous	03/30/06	, i	03/31/06	060330L04F	

Comment(s):	-Results were eval	luated to th	e MDL, concentra	itions >= to	the N	/IDL but < RL, if 1	found, are qualified wit	th a "J" flag) .	
<u>Parameter</u>	Result	<u>RL</u>	MDL	DF (Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Calcium	ND	0.100	0.00932	1		Potassium	ND	0.500	0.0561	1
Magnesium	0.00427	0.100	0.00328	1	J	Sodium	0.0207	0.500	0.0192	1 J

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

0.00469

0.100

0.00214

Pasadena, CA 91107-6024

Date Received:

Work Order No:

ND

0.00100

0.0000189

Preparation:

Method: Units: 06-03-1770

EPA 3005A Filt.

EPA 200.8

03/30/06

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Nu	mber		Lab Sa Num			Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-6	P		06-03	-1770-1		03/30/06	Aqueous	03/31/06	03/31/06	060331L02
Comment(s):	-Results were eva	aluated to the	MDL, concentrati	ons >=	to the	MDL but < RL, if	found, are qua	lified with a "J	" flag.	
Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Resi	<u>it RL</u>	<u>MDL</u>	<u>DF</u> Qual
ron	0.0509	0.100	0.00214	1	J,B	Manganese	0.0	0.0	0.0000	189 1
MW-3		10 pt	06-03	-1770-2		03/30/06	Aqueous	03/31/06	03/31/06	060331L025
Comment(s):	-Results were eva	aluated to the	MDL, concentrati	ons >=	to the I	MDL but < RL, if	found, are qua	lified with a "J	" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Res	ult RL	<u>MDL</u>	DF Qual
ron	0.0436	0.100	0.00214	1	J,B	Manganese	0.0	0.0	0100 0.0000	189 1
	Market Commission				OF.	N/A	Aqueous	03/31/06	03/31/06	0803341 02 H
Method Blank			U99-1	0-008-7		TANK CARE STREET	Marity, Top (constant Mill)		Control of the Contro	Market Committee
Method Blank Comment(s):	Service remember in the property of the second	aluated to the	MDL, concentrati	rajet, bijatem d. S	O Provide la	WAY 7 PC WS CONTROL CONTROL OF THE		andre in the Thirteen and the Comment	333/65 4#949/692444 VI 321/M	

Manganese

RL - Reporting Limit ,

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

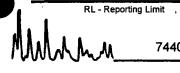
Method:

03/30/06

06-03-1770

EPA 3520B

EPA 8270C(M) Isotope


Dilution

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

1 10,000 200 010011		g = 0 0 0 (r		,,				
Client Sample Number		Lab Samp Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-6		06-03-17	70-1	03/30/06	Aqueous	04/04/06	-04/06/06	060404L10
Comment(s): -Results were	evaluated to the	MDL, concentrations	>= to the M	DL but < RL, if	found, are qua	alified with a "J"	' flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane <u>Surrogates:</u>	ND REC (%)	2.0 Control Limits	0.40	1	Qual	ug/L		
Nitrobenzene-d5	104	56-123						
MW-312	i din in di	06-03-17	70-2	03/30/06	Aqueous	04/04/06	04/06/06	060404L10
Comment(s): -Results were	evaluated to the	MDL, concentrations	s >= to the M	DL but < RL, if	found, are qua	alified with a "J"	' flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	REC (%)	Control Limits			<u>Qual</u>			
Nitrobenzene-d5	96	56-123						
Method Blank		099-09-0	04-558	NA P	Aqueous	04/04/06	04/05/06	060404L10
Comment(s): -Results were	evaluated to the	MDL, concentrations	s >= to the M	DL but < RL, if	found, are qua	alified with a "J"	' flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		

Method Blank	14. 14. 1	099-09-0	04-558	NA F	Aqueous	04/04/06	04/05/06 060404	IL10
Comment(s): -Results wer	e evaluated to the M	DL, concentrations	s >= to the MD	L but < RL, if	found, are qua	lified with a "J" fla	g.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits			<u>Qual</u>			
Nitrobenzene-d5	81	56-123						

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation: Method:

03/30/06

06-03-1770

EPA 3520B

EPA 1625CM

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Project. BOU Ground	awater won	itoring 2006 (i	AC Wei	IS) / 17053-	-06-01			rage i of
Client Sample Number		Lab Samp Numbe		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-6		06-03-17	70-14	03/30/06	Aqueous	04/03/06	04/05/06	060403L03
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>		
N-Nitrosodimethylamine Surrogates:	170 <u>REC (%)</u>	2 Control Limits	0.48	1	E <u>Qual</u>	ng/L		
1,4-Dichlorobenzene-d4	51	50-130						
MW3		06-03-17	70-2	03/30/06	Aqueouş	1 04/03/06	04/05/06	0604031.03
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
N-Nitrosodimethylamine Surrogates:	18 <u>REC (%)</u>	2 Control Limits	0.48	1	Qual	ng/L		
1,4-Dichlorobenzene-d4	65	50-130						
Method Blank		099-07-0	27-228	NA 🖖	Aqueous	04/03/06	04/05/06	060403L03
Comment(s): -Results were	evaluated to the	MDL, concentrations	s >= to the M	DL but < RL, if	found, are qua	alified with a "J"	' flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Units</u>		
N-Nitrosodimethylamine Surrogates:	ND REC (%)	2.0 Control Limits	0.48	1	Qual	ng/L		
1,4-Dichlorobenzene-d4	78	50-130						

RL - Repor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/30/06

Work Order No:

06-03-1770

Preparation:

EPA 5030B

Method:

EPA 8260B

Units:

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 5

Client Sample Number			Lab Sar Numb		Date Collected	Matrix F	Date Prepared	Date Analyzed	QC Bat	ch ID
MW-6			06-03-	1770-1	03/30/06	Aqueous = (3/30/06	03/30/06	060330	L01
Comment(s): -Results were ev	aluated to th	e MDL, coi	ncentratio	ns >= to the N	VIDL but < RL, if fou	und, are qualifie	d with a "J" f	lag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	DF Qua
Acetone	ND	10	6.1	1	1,3-Dichloropropa	ane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloroprop		ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloroprope		ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropro		ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1	t-1.3-Dichloropro	pene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	•	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzene	•	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluen		ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Chlori		ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Penta		ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1
Carbon Tetrachloride	2.2	0.5	0.42	1	n-Propylbenzene		ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachlo	roethane	ND	1.0	0.37	1
Chloroform	2.0	1.0	0.22	1	1,1,2,2-Tetrachlo		ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroethen		130	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene		ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobe	enzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1.2.4-Trichlorobe		ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroeti	hane	ND	1.0	0.32	1
1.2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1		nane 0.74	10.00	0.54	1
Dibromomethane	ND	1.0	0.42	1	1.1.2-Trichloroetl		ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1	Trichloroethene		69	1	0.30	1
1.3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluorome	ethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropre	opane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylbe	enzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylbe	enzene	ND	1.0	0.19	1
1,2-Dichloroethane	0.43	0.50	0.22	1 ј	Vinyl Acetate		ND	10	3.2	1
1,1-Dichloroethene	1.8	1.0	0.31	1	Vinyl Chloride		ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Etl	her (MTBE)	ND	1.0	0.29	1
Surrogates:	REC (%)	Control I	<u> imits</u>	<u>Qual</u>	Surrogates:		<u>REC (%</u>) <u>Control</u>	<u>Limits</u>	Qua
Dibromofluoromethane	101	74-140			1,2-Dichloroetha	ne-d4	102	74-146		

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

Units:

EPA 5030B EPA 8260B

03/30/06

06-03-1770

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 2 of 5

Client Sample Number			Lab Sa Numb		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	ch ID
MW3			06-03-	1770-2	03/30/06	Aqueous	03/30/06	03/30/06	060330	L01
Comment(s): -Results were e	evaluated to th	e MDL, co	ncentratio	ons >= to the N	MDL but < RL, if fo	ound, are qualifi	ed with a "J" 1	flag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>	•	Result	RL	MDL	DF Qua
Acetone	ND	10	6.1	1	1,3-Dichloroprop	oane .	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloroprop		ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloroprop		ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropr	opene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropro		ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	,	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzen	e	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluer	ne	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Chlori	ide	ND	10 -	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Penta	anone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene	9	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachic	oroethane	ND	1.0	0.37	1
Chloroform	0.89	1.0	0.22	1 J	1,1,2,2-Tetrachic	oroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroether	ne	29	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene		ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobe	enzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobe	enzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroet	thane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1	,2,2-Trifluoroet	hane 1.1	10.0	0.54	1
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroet	thane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1	Trichloroethene		8.3	1.0	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluorom	ethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropi	ropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylb	enzene	ND	1.0	0.26	1
1,1-Dichloræthane	ND	1.0	0.53	1	1,3,5-Trimethylb	enzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate		ND	10	3.2	1
1,1-Dichloroethene	1.1	1.0	0.31	1	Vinyl Chloride		ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Et	ther (MTBE)	ND	1.0	0.29	1
Surrogates:	<u>REC (%)</u>	Control I	<u>Limits</u>	<u>Qual</u>	Surrogates:		<u>REC (%</u>		Limits	Qua
Dibromofluoromethane	102	74-140			1,2-Dichloroetha		106	74-146		
Toluene-d8	97	88-112			1,4-Bromofluoro	benzene	95	74-110		

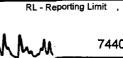
DF - Dilution Factor

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation:

06-03-1770 **EPA 5030B**

03/30/06


Method: Units:

EPA 8260B ug/L

Page 3 of 5

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Client Sample Number			Lab Sa Num		Date Collected Matrix p	Date Prepared	Date Analyzed	QC Bat	ch ID
LTB-033006A		1175	06-03	1770-3	/ 03/30/06 Aqueous (03/30/06	03/30/06	060330	L01
Comment(s): -Results were	evaluated to the	e MDL, co	ncentrati	ons >= to the	MDL but < RL, if found, are qualifie	ed with a "J" f	flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Acetone	8.1	10.0	6.1	1 J	1,3-Dichloropropane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloropropane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloropropene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropropene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone	ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluene	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Chloride	ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	· 1	4-Methyl-2-Pentanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene	ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene	ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.37	1
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrachloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroethene	ND	1.0	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene	ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobenzene	NĐ	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobenzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1,2,2-Trifluoroetl	nane ND	10	0.54	1
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1	Trichloroethene	ND	1.0	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluoromethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylbenzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate	ND	10	3.2	1
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride	ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene	ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene	ND	1.0	0.21	1
1,2-Dichloropropane	ND .	1.0	0.28	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
Surrogates:	REC (%)	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:	<u>REC (%</u>	6) Control	Limits	Qual
Dibromofluoromethane	104	74-140			1,2-Dichloroethane-d4	106	74-146		
Toluene-d8	95	88-112			1,4-Bromofluorobenzene	95	74-110		

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

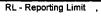
Method:

Units:

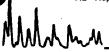
ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 4 of 5


03/30/06

06-03-1770


EPA 5030B

EPA 8260B

Client Sample Number			Lab Sai Numb		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	ch ID	
LFB-033006A			06-03-	1770- 4 7-	03/30/06	Aqueous	03/30/06	03/30/06	060330	L01	
Comment(s): -Results were e	evaluated to th	e MDL, co	ncentratio	ons >= to th	e MDL but < RL, if	f found, are qualifi	ed with a "J" f	lag.			
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u> Qu	al Parameter		Result	<u>RL</u>	MDL	DF (Qua
Acetone	25	10	6.1	1	1,3-Dichlorop	ropane	ND	1.0	0.30	1	
Benzene	0.29	0.50	0.26	1	J 2,2-Dichlorop	ropane	ND	1.0	0.40	1	
Bromobenzene	NĐ	1.0	0.47	1	1,1-Dichlorop	ropene	ND	1.0	0.21	1	
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichlord		ND	0.50	0.45	1	
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloro		ND	0.50	0.31	1	
Bromoform	NÐ	1.0	0.62	1	Ethylbenzene		ND	1.0	0.17	1	
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1	
2-Butanone	10	10	4.2	1	Isopropylbenz	ene	ND	1.0	0.24	1	
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyttol	uene	ND	1.0	0.21	1	
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Ch	loride	ND	10	2.6	. 1	
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Pe	entanone	ND	10	2.4	1	
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1	
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenze	ene	ND	1.0	0.30	1	
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1	
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrac	chloroethane	ND	1.0	0.37	1	
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrac	chloroethane	ND	1.0	0.37	1	
Chloromethane	ND	10	1.8	1	Tetrachloroeti	hene	ND	1.0	0.29	1	
2-Chlorotoluene	ND	1.0	0.24	1	Toluene		0.92	1.0	0.35	1	
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlor	obenzene	ND	1.0	0.39	1	
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlor	obenzene	- ND	1.0	0.35	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichlor	oethane	ND	1.0	0.32	1	
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichlor	o-1,2,2-Trifluoroe	hane ND	10	0.54	1	
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichlor		ND	1.0	0.54	1	
1,2-Dichlorobenzene	ND	1.0	0.24	. 1	Trichloroethe	ne	ND	1.0	0.30	.1	
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluor	omethane	ND	10	0.36	1	
1,4-Dichlorobenzene	' ND	1.0	0.30	1	1,2,3-Trichlor	opropane	ND	5.0	2.3	1	
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimeth		ND	1.0	0.26	1	
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimeth	ylbenzene	ND	1.0	0.19	1	
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate		ND	10	3.2	1	
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride)	ND	0.50	0.33	1	
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		ND	1.0	0.38	1	
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		0.21	1.0	0.21	1	
1,2-Dichloropropane	ND	1.0	0.28	1		Ether (MTBE)	ND	1.0	0.29	1	
Surrogates:	REC (%)	Control	<u>Limits</u>	<u>Qu</u>	al Surrogates:		<u>REC (%</u>	(a) Control	<u>Limits</u>	9	<u>Qua</u>
Dibromofluoromethane	103	74-140			1,2-Dichloroe	thane-d4	106	74-146			
Toluene-d8	94	88-112			1,4-Bromofluo	orobenzene	95	74-110			

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

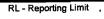
Preparation:

Method:

Units:

03/30/06 06-03-1770

EPA 5030B


EPA 8260B

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 5 of 5

Client Sample Number			Lab San Numb		Date Collected Matrix p	Date repared	Date Analyzed	QC Batc	h ID
Method Blank		14.	099-10	-006-17,502	N/A Aqueous 0	3/30/06	03/30/06	060330L	01
Comment(s): -Results were ev	aluated to the	e MDL, co	ncentratio	ns >= to the N	IDL but < RL, if found, are qualified	d with a "J" f	lag.		
Parameter	Result	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Acetone	ND	10	6.1	1	1,3-Dichloropropane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloropropane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloropropene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropropene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone	ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluene	ND	1.0	0.21	1
sec-Butylbenzene	NĐ	1.0	0.21	1	Methylene Chloride	ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Pentanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene	ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene	ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.37	1
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrachloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroethene	ND	1.0	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene	ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1.2.3-Trichlorobenzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobenzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1,2,2-Trifluoroeth	ane ND	10	0.54	1
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1.	Trichloroethene	ND	1.0	0.30	1 .
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluoromethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylbenzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate	ND	10	3.2	1
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride	ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene	ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene	ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
Surrogates:	<u>REC (%)</u>	Control I	<u>imits</u>	<u>Qual</u>	Surrogates:	REC (%	<u>Control l</u>	<u>imits</u>	<u>Qual</u>
Dibromofluoromethane	106	74-140			1,2-Dichloroethane-d4	110	74-146		
Toluene-d8	99	88-112			1,4-Bromofluorobenzene	96	74-110		

DF - Dilution Factor

EPA 8260B Tentatively Identified Compound List

Work Order

CEL Sample Client ID

Q Compound

CAS NUMBER

RT

On Column Conc. Estimated Conc.

ug/L

<u>ug/L</u>

06-03-1770

No TICs Found

Q Qualifier RT Retention Time

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

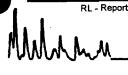
Work Order No:

Preparation:

Method:

03/30/06

06-03-1770


EPA 5030B SRL 524M-TCP

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Number		Lab Sa Numb	•	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID	
MW-6	4 kg	06-03-	1770-1	03/30/06	Aqueous	04/03/06	04/03/06	060403L01	
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>			
1,2,3-Trichtoropropane	0.020	0.005	0.00081	1		ug/L			
MW-3		06-03-	1770-2	03/30/06	Aqueous	04/03/06	- 04/03/06	060403L01	
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>			
1,2,3-Trichloropropane	0.23	0.02	0.0041	5		ug/L			
Method Blank	1	/ 099-10)-022-216	NA ₁	Aqueous	04/03/06	04/03/06	060403L01	
Comment(s): -Results were	evaluated to the I	MDL, concentration	ons >= to the MI	OL but < RL, if	found, are qua	lified with a "J"	flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
7									

ug/L ND 0.0050 0.00081 1,2,3-Trichloropropane

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

03/30/06

06-03-1770

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

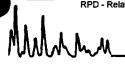
Page 1 of 1

Client Cample Months		L	ab Sample	Numbe		Matr	iv		
Client Sample Number	Jidamanasian ja	Manage State (1980)	STERLEY PRO STERLEY	(Bringles office)	Collected	I IAICID		Pany you by the manager of the control	Market of Market Commission of Spiritual Park Spirit
MW-6		11.2	06-03-177	D-1	03/30/06	Aque	ous 🗀 🖟	100	Tarker Street
Comment(s): (1) Results we	re evaluated to the N	MDL, conce	entrations >	= to the	MDL but <	RL, if found	d, are qualified with	n a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent	3.0	0.2	0.0050	1	В	ug/L	N/A	03/30/06	EPA 218.6
Chloride	39	10	0.055	10		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N)	12	1	0.028	10		mg/L	N/A	03/30/06	EPA 300.0
Sulfate	78	10	0.069	10		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/06/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	N/A	03/31/06	EPA 376.2
Dissolved Oxygen	7.23	0.01	0.0100	1		mg/L	N/A	03/30/06	SM 4500-O G

MW-3			06-03-177	0-2	03/30/06	S Aque	ous		
Comment(s): (1) Results were	evaluated to the N	MDL, conce	entrations >	= to the	MDL but <	RL, if foun	d, are qualified with	n a "J" flag.	
<u>Parameter</u>	<u>Result</u>	RL	<u>MDL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent	1.7	0.2	0.0050	1	В	ug/L	N/A	03/30/06	EPA 218.6
Chloride	43	10	0.055	10		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N)	12	1	0.028	10		mg/L	N/A	03/30/06	EPA 300.0
Sulfate	72	10	0.069	10		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/06/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	N/A	03/31/06	EPA 376.2
Dissolved Oxygen	7.59	0.01	0.0100	1		mg/L	N/A	03/30/06	SM 4500-O G

Method Blank			1,45	1 - 1	" N/A	Aque	ous 💮		
Comment(s): (1) Results were	evaluated to the	MDL, conce	ntrations >	= to the	MDL but <	RL, if foun	d, are qualified with	n a "J" flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent (1)	0.13	0.20	0.0050	1	J	ug/L	N/A	03/30/06	EPA 218.6
Chloride (1)	ND	1.0	0.055	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N) (1)	ND	0.10	0.028	1		mg/L	N/A	03/30/06	EPA 300.0
Sulfate (1)	ND	1.0	0.069	1		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/05/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	N/A	03/31/06	EPA 376.2

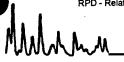
DF - Dilution Factor ,


Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method: 03/30/06 06-03-1770 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
06-03-1726-2	Aqueous	s ICP 3300	03/30/06		03/31/06	060330804
	140 A/DEO		22 DE 0 01	555	DDD 01	0 115
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Antimony	108	112	72-132	4	0-10	
Arsenic	107	111	80-140	4	0-11	
Barium	108	110	87-123	1	0-6	
Beryllium	105	107	89-119	2	0-8	
Cadmium	105	107	82-124	2	0-7	
Chromium	105	108	86-122	2	0-8	
Cobalt	107	105	83-125	2	0-7	
Copper	91	93	78-126	2	0-7	
Lead	105	108	84-120	3	0-7	
Molybdenum	110	113	78-126	3	0-7	
Nickel	100	102	84-120	2	0-7	
Selenium	109	112	7 9 -127	3	0-9	
Silver	104	106	86-128	2	0-7	
Thallium	96	99	79-121	3	0-8	
Vanadium	107	109	88-118	2	0-7	
Zinc	108	106	89-131	2	0-8	

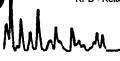


Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/30/06 06-03-1770 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d <i>i</i>	Date Analyzed	MS/MSD Batch Number
.06-03-1726-2	Aqueou	is = 112 ICP 3300	03/30/06		03/31/06	060330504
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Calcium	4 X	4X	77-113	4X	0-11	Q
Magnesium	4X	4X	56-140	4X	0-11	Q
Potassium	103	109	83-131	3	0-7	
Sodium	4X	4X	73-127	4X	0-9	Q

Pasadena, CA 91107-6024


Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300

Date Received: Work Order No: Preparation: Method: 03/30/06 06-03-1770 EPA 3005A Filt. EPA 200.8

Quality Control Sample ID	Matrix	Instrument	Date Prepare		Date nalyzed	MS/MSD Batch Number
06-03-1726-2	Aqueous	ICP/MS/A	03/31/06	· · · · · · · · · · · · · · ·	3/31/06	060331802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Iron Manganese	124 92	129 88	80-120 80-120	4 5	0-20 0-20	3

Quality Control - Spike/Spike Duplicate

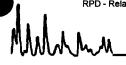
Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/30/06 06-03-1770 EPA 7470A Total EPA 7470A

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared	l .	Date Analyzed	MS/MSD Batch Number
06-03-1847-1	Aqueous	Mercury	03/31/06	44.5	03/31/06	060331\$02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	109	109	71-134	1 .	0-14	

RPD - Rela

Quality Control - Spike/Spike Duplicate



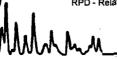
Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method:

03/30/06 06-03-1770 EPA 5030B EPA 8260B

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
06-03-1516-1	Aqueous	GC/MS T	03/30/06	4	03/30/06	060330801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	105	88-118	2	0-7	
Carbon Tetrachloride	95	100	67-145	5	0-11	
Chlorobenzene	102	104	88-118	2	0-7	
1,2-Dichlorobenzene	104	106	86-116	2	0-8	
1,1-Dichloroethene	105	107	70-130	1	0-25	
Toluene	106	107	87-123	1	0-8	
Trichloroethene	102	104	79-127	2	0-10	
Vinyl Chloride	104	106	69-129	2	0-13	
Methyl-t-Butyl Ether (MTBE)	107	113	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	83	105	36-168	24	0-45	
Diisopropyl Ether (DIPE)	110	113	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	104	108	72-126	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	109	72-126	5	0-12	
Ethanol	120	134	53-149	11	0-31	

D - Relative Percent Difference , CL - Control I

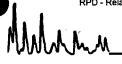

Quality Control - Spike/Spike Duplicate

Tools Jee

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/30/06 06-03-1770 EPA 5030B SRL 524M-TCP

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-6	Aqueou	is GC/MS Mi = .	04/03/06		04/03/06	060403501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD C	L Qualifiers
1,2,3-Trichloropropane 1,4-Dioxane	104 87	103 87	80-120 80-120	0 0	0-20 0-20	

Quality Control - Spike/Spike Duplicate


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received:

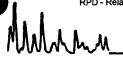
Work Order No:

06-03-1770

N/A

Maux. Agreeus	<u> </u>									
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> <u>Extracted</u>	MS% REC	MSD % REC	%REC CL	RPD	RPD CL	Qualifiers
Chloride	EPA 300.0	06-03-1726-2	03/30/06	N/A	97	98	56-134	1	0-3	
Nitrite (as N)	EPA 300.0	06-03-1726-2	03/30/06	N/A	98	100	68-122	2	8-0	
Nitrate (as N)	EPA 300.0	06-03-1726-2	03/30/06	N/A	98	97	58-142	0	0-6	
Sulfate	EPA 300.0	06-03-1726-2	03/30/06	N/A	99	100	49-133	0	0-3	
Chromium, Hexavalent	EPA 218.6	MW-3	03/30/06	N/A	103	99	85-121	4	0-4	
Perchlorate	EPA 314.0	06-04-0046-1	04/06/06	N/A	96	97	80-120	0	0-15	

Quality Control - Duplicate


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

N/A 06 03 1770

Work Order No: 06-03-1770

Matrix: Aqueous	解 大。	TO AN AND AND AND AND AND AND AND AND AND			1. P. (2.)		eKe j	
<u>Parameter</u>	<u>Method</u>	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Dissolved Oxygen Sulfide, Total	SM 4500-O G EPA 376.2	MW-3 06-03-1782-22	03/30/06 03/31/06	7.59 ND	7.61 ND	0 NA	0-25 0-25	

alscience

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

N/A

06-03-1770 EPA 3005A Filt.

EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
097-01-003-5,966	Aqueous	ICP 3300 (a)	03/31/06	060330-1-04	060330L04F
<u>Parameter</u>	Con	Added C	Conc Recovered	LCS %Rec	%Rec CL Qualifiers
Antimony	0	.500	0.401	80	80-120
Arsenic	0	.500	0.430	86	80-120
Barium	0	.500	0.465	93	80-120
Beryllium	0	.500	0.456	91	80-120
Cadmium	0	.500	0.481	96	80-120
Chromium	0	.500	0.471	94	80-120
Cobalt	0	.500	0.486	97	80-120
Copper	0	.500	0.437	87	80-120
Lead	0	.500	0.479	96	80-120
Molybdenum	0	.500	0.484	97	80-120
Nickel	0	.500	0.483	97	80-120
Selenium	0	.500	0.443	89	80-120
Silver	0	.250	0.218	87	80-120
Thallium	0	.500	0.467	93	80-120
Vanadium ⁻	0	.500	0.459	92	80-120
Zinc	0	.500	0.498	100	80-120

alscience

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

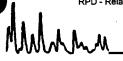
N/A

06-03-1770

EPA 3005A Filt.

EPA 6010B

Quality Control Sample ID	Matrix	Instru	ment Date	Analyzed	Lab File ID	LCS Batch Number
097-01-003-5,966	Aqueous	ICP S	1300 - 1	3/31/06	060330-I-04/* 19:5	060330L04F
Parameter		Conc Added	Conc Recov	ered LCS '	%Rec Ci	Qualifiers
Calcium		0.500	0.455	91	80-120	
Magnesium		0.500	0.472	94	80-120	
Potassium		5.00	4.47	89	80-120	
Sodium		5.00	4.52	90	80-120	



Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1770 EPA 3005A Filt. EPA 200.8

Quality Control Sample ID			Date Prepared A	Date nalyzed	LCS/LCSD Batc Number	h
099-10-008-705	Aqueous : Ci	P/MSA	03/31/06 0	v31/06	060331L02	
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC CL	RPD	RPD CL	Qualifiers
Iron	100	102	85-115	2	0-20	
Manganese	100	101	85-115	1	0-20	

alscience nvironmental

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

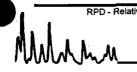
3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

06-03-1770


N/A

EPA 7470A Filt.

Method:

EPA 7470A

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
099-04-008-2,415	Aqueous	- Mercury	03/31/06		p 1 060331L02F
<u>Parameter</u>	Cor	nc Added C	Conc Recovered	LCS %Rec	%Rec CL Qualifiers
Mercury	0	.0100	0.0108	108	90-122

Quality Control - LCS/LCS Duplicate

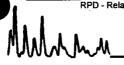
Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:


Method:

N/A 06-03-1770

EPA 3520B

EPA 8270C(M) Isotope Dilution

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	: h
099-09-004-558 A	queous :	GC/MS P	04/04/06	04/05/06	060404L10	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
1,4-Dioxane	. 112	100	50-1	30 11	0-20	

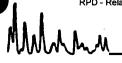
Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1770 EPA 3520B EPA 1625CM

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID			Date repared	Date Analyzed	LCS/LCSD Bato Number	h
099-07-027-228	queous G	ČIMSH 0	4/03/06)4/05/06	060403L03	
Parameter	LCS %REC	LCSD %REC	%REC CI	<u>RPD</u>	RPD CL	Qualifiers
N-Nitrosodimethylamine	103	101	50-130	2	0-20	

RPD - Relative Percent Difference , 7440 Lincoln


Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1770 EPA 5030B EPA 8260B

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix In:	strument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-10-006-17,502	Aqueous G	C/MST	03/30/06	03/30/06	060330L01	#* (F
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC C	L RPD	RPD CL	<u>Qualifiers</u>
Benzene	105	105	84-120	1	0-8	
Carbon Tetrachloride	104	101	63-147	3	0-10	
Chlorobenzene	104	105	89-119	0	0-7	
1,2-Dichlorobenzene	106	106	89-119	1	0-9	
1,1-Dichloroethene	108	106	77-125	2	0-16	
Toluene	106	107	83-125	0	0-9	
Trichloroethene	105	103	89-119	2	0-8	
Vinyl Chloride	107	105	63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	113	113	82-118	1	0-13	
Tert-Butyl Alcohol (TBA)	93	98	46-154	5	0-32	
Diisopropyl Ether (DIPE)	115	114	81-123	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	110	109	74-122	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	109	76-124	. 1	0-10	
Ethanol	124	122	60-138	2	0-32	

RPD - Relative Percent Difference , CL - Control Limit

Pasadena, CA 91107-6024

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300

Date Received: Work Order No: Preparation: Method: N/A 06-03-1770 EPA 5030B SRL 524M-TCP

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	The second control of the second state of the	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	itch		
.099-10-022-216	Aqueous 🙃 G	C/MS M	04/03/06	04/03/06	060403L01			
<u>Parameter</u>	LCS %REC	LCSD %F	REC %REC	CL RPD	RPD CL	Qualifiers		
1,2,3-Trichloropropane	85	82	80-12	20 3	0-20			
1,4-Dioxane	88	89	80-12	20 2	0-20			

RPD - Relat

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300

Date Received:

N/A

Pasadena, CA 91107-6024

Work Order No:

06-03-1770

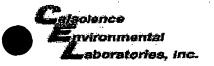
Matrix: Aqueous				751, O(174) (C. 2000) (G. 2000)	O 10 10 10 10 10 10 10 10 10 10 10 10 10	magasar Mandain saing s. S.	in to a The Machine Magazine	ribilie in the actions	<u>George</u> es, dies een ko	2000/9/ / KINNET (NO.
<u>Parameter</u>	Method	Quality Control Sample ID	<u>Date</u> <u>Extracted</u>	<u>Date</u> Analyzed	LCS % REC	LCSD % REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qual</u>
Chloride	EPA 300.0	099-05-118-3,275	N/A	03/30/06	99	97	81-111	2	0-5	
Nitrite (as N)	EPA 300.0	099-05-118-3,275	N/A	03/30/06	94	92	73-115	2	0-26	
Nitrate (as N)	EPA 300.0	099-05-118-3,275	N/A	03/30/06	95	95	87-111	0	0-12	
Sulfate	EPA 300.0	099-05-118-3,275	N/A	03/30/06	98	97	89-107	0	0-13	
Chromium, Hexavalent	EPA 218.6	099-05-124-454	N/A	03/30/06	102	100	95-107	2	0-20	
Perchlorate	EPA 314.0	099-05-203-393	N/A	04/05/06	98	98	85-115	0	0-15	

Glossary of Terms and Qualifiers

Work Order Number: 06-03-1770

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

CHAIN OF CUSTODY RECURD


GARDEN GROVE CY 92841

DATE 3/30/06 PAGE 1 OF

PAX (628)531-3	231										7						WHIC	_	4-				40L
CLIENT: LOCKHEED	MARTIN C	ORP			<u>2</u>	EX	TRAC	TION	/ANA	LYTIC	AL M	ETH	200		٧.								
PROJECT NAME: 2006	Bou		Γ	3		2				<u> </u>	}						\neg	T					TURN-AROUND TIME
Graundwater Monito	ring (PAC)	WELLS)	200	TE.	1	3		1.		1		3-	2000				7	1			2		MORMAL
TASK MANAGER: NOIL	Shukla		135	is s	28	100	13	8			×	17	18					1			AINE		OBSERVATIONS /COMMENTS
TC#: 17597-3.1A	1	^	φ φ	EPA SOL	\$\$	50	š į	EPA WASC	194	100	/ANIONS	12 Con 12 Co	deER				1	1	ព្រ	YPE	CONTAINERS	1	
SAMPLERS (SIGNATURES)	adl		S EP	5-TCP	1 22 F	Hexapatent Chromus	- PIOKO	NOWA EP	Perchlorate	2002	CATIONS/	Solved March	4						PRESERVATIVE	CONTAINER TYPE	NUMBER OF		
SAMPLE NO.	DATE	THE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(5.2) (5.2)	EP	37	- 5	3		تام	3 4	29 23	S								<u> </u>	<u> </u>	
MW-6	3/30/06		区	X	X	X	IX,	L)	IC.	V	X	X	X				__	샠	YN	4	113	1_	
MW-3	3/30/06	1020	K	X	X	X	\times	X	X	X	X	X	X					깍	24	4		<u> </u>	
· 			<u>. </u>				<u>. </u>											\perp				L	
												<u> </u>											
																			•				*
																	Т	٦			Ţ.,	Ī.,	•
																·	\top						
			П														\sqcap	T					
•			Γ														\top	T					
LTB-033006A	3/30/06	0700	K														7	가		G	2		
LFB-033006A	3/30/06	1130	$\mathbf{\nabla}$														Įν	꺳	27	C-	2	1	
Matrix Type: 8 - Boil Co W-Nater 8L - Sludge	Intainer G - Glabs Type: 65 - Stainl P - Plast	BOTTLEAVOA ESB STEEL B	LEEVE		PRES	ERVATI			IE REQ	UIRED))						•				T	enper Ach o	RATURE BLANK TES NO
RELINQUISHED BY	SIGNATURE	/	.//	/	71	ETD	Λ Τ	ECL	i, in	10		94			ME	TOTA	LNU	MBE	R	,	30	`	
RECEIVED BY	SIGNATURE	Mulg	<u>dY</u>	1	MPA				49 11	·····	-	3/30	_	120		OF C							•
BAC TA	y SIGNATURE	- D). A	الا	,9471111R. (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	/			В	76/	16	12.6			B			WEN CIC		مد	
RELINCUISHED BY	SIGNATUR	E-	Le	CC	MPA	NY C	E	_		•	7/2		E	TII	ME		IAL S	HIF	ME	NT/F	IAND	LING	OR STORAGE
MECEIVED BY GMG	GIGNATUR	E	m	\(\frac{1}{2}\)	MPA	NY (3	7				DAT O	- 1		ME	AIRE	HLL N	10:_					

EISH FCH

167C-1CC-079: XB1

WORK ORDER #:

06-03-1770

Cooler	of)

SAMPLE RECEIPT FORM CLIENT: **TEMPERATURE - SAMPLES RECEIVED BY:** CALSCIENCE COURIER: LABORATORY (Other than Calscience Courier): Chilled, cooler with temperature blank provided. ° C Temperature blank. Chilled, cooler without temperature blank. °C IR thermometer. Chilled and placed in cooler with wet ice. Ambient temperature. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank. **CUSTODY SEAL INTACT:** Sample(s): _____ No (Not Intact) : _____ Not Applicable (N/A): Cooler:____ SAMPLE CONDITION: Yes No N/A Chain-Of-Custody document(s) received with samples..... Sample container label(s) consistent with custody papers..... Sample container(s) intact and good condition..... Correct containers for analyses requested...... Proper preservation noted on sample label(s)..... Tedlar bag(s) free of condensation..... **COMMENTS:**

April 08, 2006

Neil Shukla Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Subject: Calscience Work Order No.: 06-03-1617

> Client Reference: **BOU Groundwater Monitoring 2006 (PAC**

> > Wells)/ 17653-06-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/27/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres Project Manager

A-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/27/06

Work Order No:

06-03-1617

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Nu	mber		Lab San Numb	•	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID	
MW-8			06-03-1	1617-1	03/27/06	Aqueous	03/28/06	03/29/06	060328L04F	
Comment(s):	-Results were eva	aluated to the	MDL, concentration	ns >= to the N	ADL but < RL, if	found, are qua	lified with a "	J" flag.		
	-Mercury was ana	ilyzed on 3/2	8/2006 3:30:40 PM	with batch 06	30328L02F					
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL.	DF Qual	<u>Parameter</u>	Res	ult RL	. <u>M</u> C	DE Q	ual

Parameter Parameter	<u>Result</u>	<u>RL</u>	MDL.	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF Qual
Antimony	ND	0.0150	0.00209	1		Mercury	ND	0.000500	0.0000672	1
Arsenic	ND	0.0100	0.00308	1		Molybdenum	ND	0.00500	0.000800	1
Barium	0.141	0.010	0.000719	1		Nickel	ND	0.00500	0.00137	1
Beryllium	ND	0.00100	0.000176	1		Selenium	0.00712	0.0150	0.00295	1 j
Cadmium	ND	0.00500	0.000350	1		Silver	ND	0.00500	0.000400	1
Chromium	0.00964	0.00500	0.000350	1	В	Thallium	ND	0.0150	0.00233	1
Cobalt	NĐ	0.00500	0.000696	1		Vanadium	0.00383	0.00500	0.000314	1 J,B
Copper	ND	0.00500	0.00134	• 1		Zinc	0.0268	0.0100	0.000848	1
Lead	ND	0.0100	0.00236	1		·				

Method Blank	099-04-008-2,411	VA Aqueous 03/28/06	03/28/06 060328L02F

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
	0.000240	0.000500	0.0000070	4	

Method Blank			097-	01-003-5,	956	. NA A	queous 03/28	/06 03/	29/06 06032	8L04F
Comment(s):	-Results were eval	uated to the I	MDL, concentra	tions >= t	o the I	MDL but < RL, if four	nd, are qualified wit	h a "J" flag.		
Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual
Antimony	ND	0.0150	0.00209	1		Molybdenum	ND	0.00500	0.000800	1
Arsenic	ND	0.0100	0.00308	1		Nickel	ND	0.00500	0.00137	1
Barium	ND	0.0100	0.000719	1		Selenium	ND	0.0150	0.00295	1
Beryllium	ND	0.00100	0.000176	1		Silver	ND	0.00500	0.000400	1
Cadmium	ND	0.00500	0.000350	1		Thallium	ND	0.0150	0.00233	1
Chromium	0.000943	0.00500	0.000350	1	J	Vanadium	0.000939	0.00500	0.000314	1 J
Cobalt	ND	0.00500	0.000696	1		Zinc	NĐ	0.0100	0.000848	1
Соррег	ND	0.00500	0.00134	1		Lead	ND	0.0100	0.00236	1

RL - Reporting Limit

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

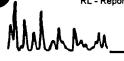
Method:

Units:

03/27/06

06-03-1617

EPA 3005A Filt.


EPA 6010B

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Number				Lab Sample Number			Matrix	Date Prepared		Date Analyzed	QC Batch ID	
MW-8	36		06-0	3-1617-1		03/27/06	Aqueous	03/28/06		03/29/06	060328L04F	
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Parameter</u>	Resu	ut E	<u>L</u>	MDL	DF	Qual
Calcium	102	0.100	0.00932	1		Potassium	:	5.22 ().50	0.0561		I
Magnesium	31.0	0.1	0.00328	1	В	Sodium	3	8.2 ().5	0.0192	!	l E
Method Blank	1		097	01-003-5	,956	. NA	Aqueous	03/28/06		03/29/06	060328L04F	
Comment(s): -	Results were eva	aluated to the	MDL, concentra	itions >=	to the l	MDL but < RL, if	found, are qual	ified with a	"J" fla	ag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Resu	<u>ult F</u>	<u> L</u>	<u>MDL</u>	<u>D</u> F	Qua
Calcium	ND	0.100	0.00932	1		Potassium	NE) (0.500	0.0561		1
Magnesium	0.0117	0.100	0.00328	1	i	Sodium	0.0	752 (0.500	0.0192	,	

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No: Preparation:

Method:

Units:

03/27/06 06-03-1617

EPA 3005A Filt. EPA 200.8

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

,											
Client Sample Nu	mber			ample nber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID	
MW-8			06-0	3-1617-1	03/27/06	Aqueous	03/29/08	03/29/0	6 06032	9L02F	
Comment(s):	-Results were eva	luated to the	MDL, concentra	tions >= to th	e MDL but < RL, it	f found, are qu	alified with a "	'J" flag.			
Parameter	<u>Result</u>	<u>RL</u>	MDL.	<u>DF</u> Qu	al Parameter	Res	<u>sult RL</u>	<u>. !</u>	<u>MDL</u>	<u>DF</u>	Qual
ron	0.0716	0.100	0.00214	1	J Manganese	0	.000934 0.	00100 0	.0000189	1	J
Method Blank			099-	10-008-704	N/A *	Aqueous	03/29/06	03/29/0	6 060329	9L02F	
Comment(s):	-Results were eva	luated to the	MDL, concentra	tions >= to th	e MDL but < RL, i	f found, are qu	alified with a "	'J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF Qu</u>	al Parameter	Res	sult RI	. !	<u>MDL</u>	<u>DF</u>	Qua
Iron	ND	0.100	0.00214	1	Manganese	N	ID 0.	00100 0	.0000189	1	

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

03/27/06 06-03-1617

EPA 3520B

EPA 8270C(M) Isotope

Dilution

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Number		Lab Samp Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MVV-8		06-03-16	i17-1	03/27/06	Aqueous	03/28/06	04/04/06	060328L09
Comment(s): -Results were eval	luated to the I	MDL, concentrations	s >= to the ME	OL but < RL, if f	ound, are qua	lified with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DE</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane Surrogates:	ND REC (%)	2.0 Control Limits	0.40	1	<u>Qual</u>	ug/L		
Nitrobenzene-d5	93	56-123						
Method Blank		099-09-0	04-556	N/A	Aqueous	03/28/06	04/03/06	060328L09
Comment(s): -Results were eval	uated to the I	MDL, concentrations	s >= to the MD	DL but < RL, if f	ound, are qua	lified with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane Surrogates:	ND REC (%)	2.0 Control Limits	0.40	1	Qual	ug/L		
Nitrobenzene-d5	84	56-123						

hhu

ing Limit , DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Date Received: Work Order No:

03/27/06 06-03-1617

Pasadena, CA 91107-6024

Preparation:

EPA 3520B

Method:

EPA 1625CM

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Number		Lab Sam _l Numbe		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-8		06-03-16	17-1	03/27/06	Aqueous	03/28/06	04/01/06	060328L08
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>		
N-Nitrosodimethylamine Surrogates:	81 <u>REC (%)</u>	2 Control Limits	0.48	1	<u>Qual</u>	ng/L		
1,4-Dichlorobenzene-d4	83	50-130						
Method Blank	12 9 0	099-07-0	27-227	NA	Aqueous	03/28/06	04/03/06	060328L08
Comment(s): -Results were eva	aluated to the	MDL, concentrations	s >= to the Mi	DL but < RL, if t	found, are qua	lified with a "J"	flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>		
N-Nitrosodimethylamine Surrogates:	ND REC (%)	2.0 Control Limits	0.48	1	Qual	ng/L		
1,4-Dichlorobenzene-d4	83	50-130						

hhu_

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Date

Date

Preparation:

Method:

Units:

Date

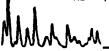
EPA 5030B EPA 8260B

03/27/06

06-03-1617

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01


Lab Sample

Page 1 of 2

Client Sample Number			Lab Sa Numi			Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bate	ch ID
*MW-8			06-03-	1617-1		03/27/06	Aqueous	03/28/06	03/29/06	060328	L03
Comment(s): -Results were e	evaluated to the	e MDL, co	ncentratio	ons >= to	the N	IDL but < RL, if	found, are qualit	fied with a "J" fl	ag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	DF Qual
Acetone	ND	10	6.1	1		1,3-Dichloropro	opane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1		2,2-Dichloropro	opane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1		1,1-Dichloropro	opene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1		c-1,3-Dichlorop	propene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1		t-1,3-Dichlorop	ropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1		Ethylbenzene		ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1		2-Hexanone		ND	10	1.9	1
2-Butanone	ND	10	4.2	1		Isopropylbenze	ene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1		p-Isopropyltolu	ene	ND	1.0	0.21	1
sec-Butylbenzene	ND ·	1.0	0.21	1		Methylene Chk	oride	3.6	10.0	2.6	1 J,B
tert-Butylbenzene	ND	1.0	0.17	1		4-Methyl-2-Per	ntanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1		Naphthalene		ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1		n-Propylbenzer	ne	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1		Styrene		ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	0.37	1
Chloroform	0.61	1.0	0.22	1	J	1,1,2,2-Tetraci	hloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1		Tetrachloroeth	ene	54	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1		Toluene		ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1		1,2,3-Trichloro	benzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1		1,2,4-Trichloro	benzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1		1,1,1-Trichloro	ethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1		1,1,2-Trichloro	-1,2,2-Trifluoroe	thane 0.79	10.00	0.54	1 J
Dibromomethane	ND	1.0	0.42	1		1,1,2-Trichloro	ethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND ·	1.0	0.24	1		Trichloroethen	е	23	. 1	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1		Trichlorofluoro		ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1		1,2,3-Trichloro		ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1		1,2,4-Trimethy		ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1		1,3,5-Trimethy	lbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1		Vinyl Acetate		ND	10	3.2	1
1,1-Dichloroethene	0.49	1.0	0.31	1	J	Vinyl Chloride		ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		p/m-Xylene		ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1		o-Xylene		ND	1.0	0.21	.1
1,2-Dichloropropane	ND	1.0	0.28	1	O1	Methyl-t-Butyl	Ether (MTBE)	ND ND	1.0	0.29	1
Surrogates:	<u>REC (%)</u>	Control	Limits		<u>Qual</u>	Surrogates:		<u>REC (%</u>		<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	112	74-140				1,2-Dichloroeth		100	74-146		
Toluene-d8	96	88-112				1,4-Bromofluor	robenzene	78	74-110		

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/27/06

Work Order No:

Date

Date

06-03-1617

Preparation:

EPA 5030B

Method:

Date

EPA 8260B

Units:

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Lab Sample

Page 2 of 2

Client Sample Number			Numb		Collected	Matrix	Prepared	Analyzed	QC Bate	ch ID	
- 1982 - 65 P. J 10, 100 - 65 J. J. C. C. C. S. S. J. 66 J. 972 688 68		200 (C. 1)	and the state of the state of	-006-17,483	N/A	860, Long 460 pt 1896 0460, 260 / 151 (c).	NA NORMANIA CANADA	(9840a.)	000000	1.00	38 80
Method Blank			099-10		WA	Aqueous	03/28/06	03/29/06	060328	LUS	
Comment(s): -Results were e	evaluated to the	MDL, cor	ncentratio	ns >= to the N	MDL but < RL, if f	found, are qualific	ed with a "J" fl	ag.			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	DF 9	Qual
Acetone	ND	10	6.1	1	1,3-Dichloropro	pane	ND	1.0	0.30	1	
Benzene	ND	0.50	0.26	1	2,2-Dichloropro	pane	ND	1.0	0.40	1	
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloropro	pene	ND	1.0	0.21	1	
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichlorop	ropene	ND	0.50	0.45	1	
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropi	ropene	ND	0.50	0.31	1	
Bromoform	ND	1.0	0.62	1	Ethylbenzene	•	ND	1.0	0.17	1	
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1	
2-Butanone	ND	10	4.2	1	Isopropylbenze	ne	ND	1.0	0.24	1	
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltolue	ene	ND	1.0	0.21	1	
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Chio	oride	2.8	10.0	2.6	1	J
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Pen	ntanone	ND	10	2.4	1	
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1	
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzer	ne	ND	1.0	0.30	1	
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1	
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrach	loroethane	ND	1.0	0.37	1	
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrach	loroethane	ND	1.0	0.37	1	
Chloromethane	ND	10	1.8	1	Tetrachloroethe	ene	ND	1.0	0.29	1	
2-Chiorotoluene	ND	1.0	0.24	1	Toluene		ND	1.0	0.35	1	
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorob	benzene	ND	1.0	0.39	1	
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorol	benzene	ND	1.0	0.35	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroe	ethane	ND	1.0	0.32	1	
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-	-1,2,2-Trifluoroet	hane ND	10	0.54	1	
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroe	ethane	ND	1.0	0.54	1	
1,2-Dichlorobenzene	· ND	1.0	0.24	1	Trichloroethene	e	ND	1.0	0.30	1	
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluoror	methane	ND	10	0.36	1	
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloro		ND	5.0	2.3	1	
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethyl		ND	1.0	0.26	1	
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethyl	benzene	ИĎ	1.0	0.19	1	
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate		ND	10	3.2	1	
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride		ND	0.50	0.33	1	
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		ND	1.0	0.38	1	
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		0.21	1.0	0.21	1	J
1,2-Dichloropropane	ND ND	1.0	0.28	1	Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	0.29	1	
Surrogates:	<u>REC (%)</u>	Control L	<u>lmπs</u>	<u>Qual</u>	Surrogates:		REC (%	-	LIMITS	9	Qual
Dibromofluoromethane	128	74-140			1,2-Dichloroeth		116	74-146	•		
Toluene-d8	98	88-112			1,4-Bromofluor	obenzene	79	74-110			

DF - Dilution Factor

EPA 8260B Tentatively Identified Compound List

Work Order

CEL Sample Client ID

Q Compound

CAS NUMBER

<u>RT</u>

On Column Conc. Estimated Conc.

ug/L

ug/L

06-03-1617

No TICs Found

Q Qualifier RT Retention Time

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

03/27/06

06-03-1617

EPA 5030B SRL 524M-TCP

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Number		Lab Sa Numl	•	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-8		06-03-	1617-1	03/27/06	Aqueous	03/28/06	03/28/06	- 060328L01
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,2,3-Trichloropropane	0.028	0.005	0.00081	1	В	ug/L		
Method Blank		099-10)-022-213	N/A	Aqueous ?	03/28/06	03/28/06	060328L01
Comment(s): -Results were	evaluated to the N	IDL, concentration	ons >= to the MI	DL but < RL, if	found, are qua	lified with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,2,3-Trichloropropane	0.0027	0.0050	0.00081	1	J	ug/L		

Mulhan_

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

03/27/06

06-03-1617

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Page 1 of 1

Client Sample Number		L	ab Sample	Numbe	r Date Collecter	d Matr	ix		
MW-8			06-03-161	7-1	03/27/06	966-6200-7-7-7-8-8-8	ous		
Comment(s): (1) Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.									
<u>Parameter</u>	Result	RL	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent	1.8	0.2	0.0050	1	В	ug/L	N/A	03/28/06	EPA 218.6
Chloride	43	10	0.055	10		mg/L	N/A	03/28/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/28/06	EPA 300.0
Nitrate (as N)	11	1	0.028	10		mg/L	N/A	03/28/06	EPA 300.0
Sulfate	75	10	0.069	10		mg/L	N/A	03/28/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/04/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	N/A	03/28/06	EPA 376.2
Dissolved Oxygen	7.24	0.01	0.0100	1		mg/L	N/A	03/27/06	SM 4500-O G

Method Blank	1.0				. NA	Aque	ous			
Comment(s): (1) Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.										
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>	
Chromium, Hexavalent (1)	0.14	0.20	0.0050	1	J	ug/L	N/A	03/28/06	EPA 218.6	
Chloride (1)	ND	1.0	0.055	1		mg/L	N/A	03/28/06	EPA 300.0	
litrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/28/06	EPA 300.0	
litrate (as N) (1)	ND	0.10	0.028	1		mg/L	N/A	03/28/06	EPA 300.0	
Sulfate (1)	ND	1.0	0.069	1		mg/L	N/A	03/28/06	EPA 300.0	
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/04/06	EPA 314.0	
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	N/A	03/28/06	EPA 376.2	

Tetra Tech, Inc.

Date Received: Work Order No: Preparation:

Method:

03/27/06 06-03-1617 EPA 3005A Filt. EPA 6010B

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Project BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared	A	Date Analyzed	MS/MSD Batch Number
06-03-1582-3	Aqueous	ICP 3300	03/28/06	X ¹	03/29/06	060328504
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Antimony	103	103	72-132	0	0-10	
Arsenic	108	107	80-140	0	0-11	
Barium	108	106	87-123	1	0-6	
Beryllium	105	104	89-119	1	8-0	
Cadmium	105	104	82-124	1	0-7	
Chromium	106	104	86-122	1	0-8	
Cobalt	107	107	83-125	0	0-7	
Copper	88	88	78-126	0	0-7	
Lead	105	104	84-120	0	0-7	
Molybdenum	106	106	78-126	0	0-7	
Nickel	101	101	84-120	1	0-7	
Selenium	107	106	79-127	1	0-9	
Silver	104	103	86-128	1	0-7	
Thallium	98	98	79-121	1	0-8	
Vanadium	105	104	88-118	1	0-7	
Zinc	91	91	89-131	0	0-8	

RPD - Rela

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/27/06 06-03-1617 EPA 3005A Filt. EPA 6010B

Project BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepare		Date I	MS/MSD Batch Number
06-03-1582-3	Aqueou	is ICP 3300	03/28/06	0	3/29/06	060328504
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Calcium	4X	4X	77-113	4X	0-11	Q
Magnesium	4X	4X	56-140	4X	0-11	Q
Potassium	114	111	83-131	1	0-7	
· Sodium	4X	4X	73-127	4X	0-9	Q

MAM_

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/27/06 06-03-1617 EPA 3005A Filt. EPA 200.8

Project BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number
06-03-1582-3	Aqueous	ICP/MS*A	03/29/06	, 0	3/29/06	060329S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Iron Manganese	116 115	94 118	80-120 80-120	21 2	0-20 0-20	4

Mulhau_

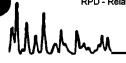
Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/27/06 06-03-1617 EPA 7470A Filt. EPA 7470A

Project BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
06:03:1582-3	Aqueous	Mercury	03/28/06	03/28/06	060328\$02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD	CL Qualifiers
Mercury	100	100	71-134	0 0-1	4

Mhha

RPD - Relative Percent Difference , CL - Control Lin



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method: 03/27/06 06-03-1617 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
06-03-1552-4	Aqueous	S GC/MS W	03/28/06		03/29/06	060328S02	
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	106	109	88-118	4	0-7		
Carbon Tetrachloride	90	89	67-145	1	0-11		
Chlorobenzene	101	106	88-118	4	0-7		
1,2-Dichlorobenzene	97	100	86-116	3	0-8		
1,1-Dichloroethene	88	93	70-130	5	0-25		
Toluene	105	110	87-123	4	0-8		
Trichloroethene	96	95	79-127	1	0-10		
Vinyl Chloride	88	92	69-129	3	0-13		
Methyl-t-Butyl Ether (MTBE)	87	78	71-131	9	0-13		
Tert-Butyl Alcohol (TBA)	83	84	36-168	2	0-45		
Diisopropyl Ether (DIPE)	117	118	81-123	1	0-9		
Ethyl-t-Butyl Ether (ETBE)	100	98	72-126	2	0-12		
Tert-Amyl-Methyl Ether (TAME)	101	101	72-126	.0	0-12		
Ethanol	94	97	53-149	3	0-31		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

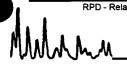
Date Received: Work Order No: Preparation: Method: 03/27/06 06-03-1617 EPA 5030B SRL 524M-TCP

Project BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		MS/MSD Batch Number
06-03-1582-3	Aqueous	GC/MS M	03/28/06	03/2	8/06	060328501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane 1,4-Dioxane	96 116	104 137	80-120 80-120	8 17	0-20 0-20	3

RPD - Relati

nvironmental Quality Control - Spike/Spike Duplicate


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

N/A 06-03-1617

Matrix: Aqueous		5								
Parameter	Method	Quality Control Sample ID	<u>Date</u> Analyzed	<u>Date</u> Extracted	MS% REC	MSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Chloride	EPA 300.0	06-03-1582-3	03/28/06	N/A	100	98	56-134	1	0-3	
Nitrite (as N)	EPA 300.0	06-03-1582-3	03/28/06	N/A	98	95	68-122	3	0-8	
Nitrate (as N)	EPA 300.0	06-03-1582-3	03/28/06	N/A	97	95	58-142	1	0-6	
Sulfate	EPA 300.0	06-03-1582-3	03/28/06	N/A	99	99	49-133	0	0-3	
Chromium, Hexavalent	EPA 218.6	MW-8	03/28/06	N/A	110	110	85-121	0	0-4	
Perchlorate	EPA 314.0	06-03-1582-3	04/04/06	N/A	113	115	80-120	1	0-15	

Quality Control - Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

N/A

Work Order No:

06-03-1617

Matrix: Aqueous								
<u>Parameter</u>	<u>Method</u>	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Dissolved Oxygen Sulfide, Total	SM 4500-O G EPA 376.2	06-03-1582-3 MW-8	03/27/06 03/28/06	7.45 ND	6.59 ND	12 NA	0-25 0-25	

alscience .

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

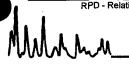
3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

N/A

Work Order No:

06-03-1617


Preparation:

EPA 3005A Filt.

Method:

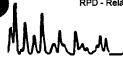
EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File I	D LCS	S Batch Number
097-01-003-5,956	Aqueous	ICP 3300	03/29/06	060328-1-0	4	060328L04F,;
<u>Parameter</u>	Conc	Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Antimony	0.	500	0.487	97	80-120	
Arsenic	0.	500	0.496	99	80-120	
Barium	0.	500	0.583	117	80-120	
Beryllium	0.	500	0.497	99	80-120	
Cadmium	0.	500	0.530	106	80-120	
Chromium	0.	500	0.516	103	80-120	
Cobalt	0.	500	0.538	108	80-120	
Copper	0.	500	0.471	94	80-120	
Lead	0.	500	0.520	104	80-120	
Molybdenum	0.	500	0.511	102	80-120	
Nickel	0.	500	0.534	107	80-120	
Selenium	0.	500	0.477	95	80-120	
Silver	0.	250	0.243	97	80-120	
Thallium	0.	500	0.494	99	80-120	
Vanadium	0.	500	0.495	99	80-120	
Zinc	0.	500	0.555	111	80-120	


alscience

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1617 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix	Instrume	ent Date Analyzed	Lab File I	D LCS	Batch Number
097-01-003-5,956	Aqueous	ICP 330	03/29/06	060328-1-0	4 0	60328L04F
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Calcium		0.500	0.602	120	80-120	
Magnesium		0.500	0.514	103	80-120	
Potassium		5.00	5.18	104	80-120	
Sodium		5.00	5.13	103	80-120	


Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1617 EPA 3005A Filt. EPA 200.8

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix In	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Batcl Number	n
099-10-008-704	Aqueous IC	CP/MS A	03/29/06	03/29/06	060329L02F	
<u>Parameter</u>	LCS %REC	LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
Iron	110	113	85-11	5 3	0-20	
Manganese	112	112	85-11	5 0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

N/A

06-03-1617

EPA 7470A Filt.

EPA 7470A

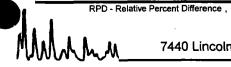
Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	ID LC	S Batch Number
099-04-008-2,411	Aqueous	Mercury	03/28/06	060328-1-0	2.kcp	060328L02F
<u>Parameter</u>	<u>Co</u>	nc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Mercury	(0.0100	0.0102	102	90-122	

N/A

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024


Date Received: Work Order No: Preparation:

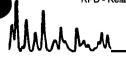
06-03-1617 **EPA 3520B**

Method:

EPA 8270C(M) Isotope Dilution

Quality Control Sample ID	Matrix lı	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch .
099-09-004-558 A	queous (GC/MS P	03/28/06	04/03/06	060328L09	
Parameter	LCS %REC	LCSD %R	EC %REC	CL RPD	RPD CL	Qualifiers
1,4-Dioxane	96	97	50-130) 1	0-20	

Quality Control - LCS/LCS Duplicate



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation:

Method:

N/A 06-03-1617 EPA 3520B EPA 1625CM

Quality Control Sample ID	Matrix In:	strument	Date Prepared	Date Analyzed	LCS/LCSD Batcl Number	n
099-07-027-227	Aqueous 🧎 G	C/MS H	03/28/06	04/03/06	0603281.08	
<u>Parameter</u>	LCS %REC	LCSD %R	EC %REC	CL RPD	RPD CL	Qualifiers
N-Nitrosodimethylamine	78	95	50-1	30 19	0-20	

alscience .

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

N/A

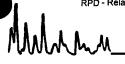
06-03-1617 EPA 5030B

EPA 8260B

Project: BOU Groundwater Monitoring 2006 (PAC Wells)/ 17653-06-01

Quality Control Sample ID	Matrix	instrument	t Date Analyze	d Lab File	ID LCS	Batch Number
099-10-006-17,483	Aqueous	GC/MS W	/ 23/28/06	28MAR027	er (060328L03
Parameter	Con	c Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Benzene		50	58	117	84-120	
Carbon Tetrachloride		50	53	105	63-147	
Chlorobenzene		50	53	106	89-119	
1,2-Dichlorobenzene	•	50	49	98	89-119	
1,1-Dichloroethene		50	56	113	77-125	
Toluene		50	56	112	83-125	
Trichloroethene		50	53	106	89-119	
Vinyl Chloride		50	50	100	63-135	
Methyl-t-Butyl Ether (MTBE)		50	52	104	82-118	
Tert-Butyl Alcohol (TBA)	;	250	280	112	46-154	
Diisopropyl Ether (DIPE)		50	61	121	81-123	
Ethyl-t-Butyl Ether (ETBE)		50	53	106	74-122	
Tert-Amyl-Methyl Ether (TAME)		50	53	106	76-124	
Ethanol		500	580	115	60-138	

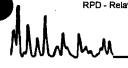
RPD - Relati


Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1617 EPA 5030B SRL 524M-TCP

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-10-022-213	Aqueous	GC/MS M	03/28/06	03/28/06	060328L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
1,2,3-Trichloropropane	98	92	80-1	20 7	0-20	
1,4-Dioxane	93	92	80-1	20 2	0-20	


Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No:

N/A 06-03-1617

Matrix: Aqueous					-			Yk.		
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> Extracted	<u>Date</u> Analyzed	LCS % REC	LCSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qual
Chloride	EPA 300.0	099-05-118-3,270	N/A	03/28/06	100	102	81-111	2	0-5	
Nitrite (as N)	EPA 300.0	099-05-118-3,270	N/A	03/28/06	98	102	73-115	3	0-26	
Nitrate (as N)	EPA 300.0	099-05-118-3,270	N/A	03/28/06	94	94	87-111	1	0-12	
Sulfate	EPA 300.0	099-05-118-3,270	N/A	03/28/06	103	104	89-107	0	0-13	
Chromium, Hexavalent	EPA 218.6	099-05-124-452	N/A	03/28/06	101	100	95-107	1	0-20	
Perchlorate	EPA 314.0	099-05-203-392	N/A	04/04/06	114	113	85-115	0	0-15	

Glossary of Terms and Qualifiers

Work Order Number: 06-03-1617

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Ε	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U.	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

TETRA TECH, INC.
3475 E. FOOTHILL BLVD.
PASADENA, CALIFORNIA 81107
TELEPHONE (626) 351-4664

SHIPPED TO: CALSCIENCE

CHAIN OF CUSTODY RECURD

GARDEN GROVE CY 92841

DATE 3/27/06 PAGE 2 OF 2

	FAX (626)351-529	11										-						DAIR	٠	4	لناب		<u></u>	AGE	-
5	CLIENT: LOCKHEED M	ARTIN C	ORP			2	EX	TRAC	TION	I/ANA	LYTIC	AL M	ETH	SGC		١									7
•	PROJECT NAME: 2006	30U			*	, H	2				<u>a</u>	•												TURN-AROUND TIME	
_	Graundwater Monitori	ng (PAC)	NELLS)	7.48	評	1	3			1	1 2		3	\$00°0				\neg	- {			S		NORMAL	
7	TASK MANAGER: NOIL S	hukla		ŽĚ	TCP EPA 504.	2 2 2 5 E	5	E	5285		(E)	ANI OVE	177	18					١			CONTAINERS		OBSERVATIONS /COMMENTS	
,	TC#: 17597-3.1A	· · · · · · · · · · · · · · · · · · ·	is.	22	6 6	ŽŽ	9.0	20	3	44	200	3	08	ER		ĺ			Ì	u l	TYPE	PAO.		USE	
}	SAMPLERS (SIGNATURES) /	M		SE SE	27	2 3	37	32	EP	o de	38	15.	130	2					Ž	¥T.	ER T	Q.		4FB-032706A	,
4	Joma D-Mohe	<u> </u>		3 \$	125-TEP (524-4/4)	9 2	Heraladent Chromin ETA 2186	1,4-PIOXANE EPA BZPC-SIM	ş	Perchlorate	30	2 3	Presolved Oxygen	417			5.	Ī	MATRIX TYPE	PRESERVATIVE	CONTAINER	NUMBER OF		4FB-032706A	
7	SAMPLE NO.	DATE	TIME	\$ ₹	(52	٠٢٠ ١٩٦٥	記記	4.4	2	50	219 675	3	63	Š								r		TRIPHFIEL DE FOR REPORT	See P
<u> </u>	MW-8	3/27/06	1545	1	X	X	X	X	X	X	X	X	X	X	·			-1		/05	%	13			
_ & ``								,																	
			{																\top						
																		\neg							٦
ጟ																			T	•					7
ለ																						,		·	7
rax:520-331-323									_									\top	1						7
ģ																									7
×														<u> </u>					\dashv					i	
Ľ									_	 			 				1	1	7						7
					\vdash				-	1		-		_				十	十	ᅥ			 		7
	Matrix Type: 8- Boil Com VI - Viater BL - SLUDGE	MINER G. GLASS TYPE: 65 STAINL P. PLASTI	BOTTLEVOA ESB STEEL BI C	EEVE	,	PRESI	ERVATI	VES HO		VE REQ	LARED												MPER CH CC	AYURE BLANK YES NO	j
5	RELINQUISHED BY	SIGNATURE	00	V	11	711	ETR	A TI	EC!	H, IN	IC.].	>2 ^A	TE,	161	IME	TOTA	AL NU	MBE	ER	1	3		,	7
<u>-</u>	VAMES D. MIKESOU RECEIVED BY	GENATURE		ua	1	MPAI			0				2/27 DA		TIF	_		HOD			MEN	<u></u>			-
E)XH	3AC 7A		Gest 1	2)=	<u>C</u>		_		27/	06	1619			A.	3		012	1	ر:	φ	
=	RELINQUISHED BY	SIGNATURE	7		.co	MPAI	, V	×	\ \ \			7/	DAT		/ TII	ME Z	SPE			ME	HATI	AND	LING	OR STORAGE	
<	MECEIVED BY	SIGNATURI	119		100	MPA	<u>~~</u>		<u> </u>			7#	DAT		<u> </u>	ME	_	BILL			_				
	Denteme-	1917)	06	m				7			-	3.2	7:0			28	_ ~~						\leq		
								_			_														_

WORK ORDER #:

06-03-1617

Cooler _____ of ____

SAMPLE RECI	EIPT FORM
CLIENT: Detracted	DATE: 3/27/-6
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A):
SAMPLE CONDITION: Chain-Of-Custody document(s) received with samples	
Page l'of 2 logged-in a	5 06-03-1582

April 08, 2006

Neil Shukla Tetra Tech. Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Calscience Work Order No.: Subject:

Client Reference:

06-03-1726

BOU Groundwater Monitoring 2006 (PAC Wells)

/ 17653-06-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/29/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres Project Manager

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Tetra Tech, Inc.

MW-5

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/29/06

Work Order No:

06-03-1726-2 03/29/06 Aqueous 03/30/06 03/31/06

06-03-1726

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Date

Date

Method:

EPA 6010B / EPA 7470A

Units:

Date

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 2

			Lab	sampie		Date	84-4-5	Date	Date	00.5		
Client Sample Nu	mber		Nui	mber		Collected	Matrix	Prepared	_ Analyzed	QC Ba	ICN ID	
MW-7		a e e	. 06-0	3-1726-1		03/29/06	Aqueous	03/30/06	03/31/0	6 06033	OLO4F	37.7
Comment(s):	-Results were eval	luated to the I	MDL, concentra	itions >= to	o the N	ADL but < RL, if f	ound, are qualif	ied with a "J	" flag.			
	-Mercury was anal	yzed on 3/30	/2006 7:49:06 F	M with ba	atch 06	60329L02F						
<u>Parameter</u>	Result	<u>RL</u>	MDL.	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	RL	1	<u>MDL</u>	DE 9	Qual
Antimony	ND	0.0150	0.00209	1		Mercury	ND	0.0	00500 0	.0000672	1	
Arsenic	0.00851	0.0100	0.00308	1	J	Molybdenum	0.00	352 0.0	0500 0	.008000	1	J,B
Barium	0.150	0.010	0.000719	1		Nickel	ND	0.0	0500 0	.00137	1	
Beryllium	ND	0.00100	0.000176	1		Selenium	ND	0.0	150 0	.00295	1	
Cadmium	ND	0.00500	0.000350	1		Silver	ND	0.0	0500 0	.000400	1	
Chromium	0.00831	0.00500	0.000350	1		Thallium	ND	0.0	150 0	.00233	1	
Cobalt	ND	0.00500	0.000696	1		Vanadium	0.00	M82 0.00	0500 0	.000314	1	J
Copper	0.00516	0.00500	0.00134	1	В	Zinc	0.01	74 0.0	100 0	.000848	1	В
Lead	0.00598	0.0100	0.00236	1	J							

-Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Comment(s):

Lab Sample

-Mercury was analyzed on 3/30/2006 7:51:19 PM with batch 060329L02F

<u>Parameter</u>	Result	RL	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	0.00209	1		Mercury	ND	0.000500	0.0000672	1	
Arsenic	ND	0.0100	0.00308	1		Molybdenum	0.00240	0.00500	0.000800	1	J,B
Barium	0.144	0.010	0.000719	1		Nickel	ND	0.00500	0.00137	1	
Beryllium	ND	0.00100	0.000176	1		Selenium	0.00669	0.0150	0.00295	1	J
Cadmium	ND	0.00500	0.000350	1		Silver	ND	0.00500	0.000400	1	
Chromium	0.00851	0.00500	0.000350	1		Thallium	ND	0.0150	0.00233	1	
Cobalt	ND	0.00500	0.000696	1		Vanadium	0.00381	0.00500	0.000314	1	J
Copper:	0.00290	0.00500	0.00134	1	J,B	Zinc	0.0130	0.0100	0.000848	1	В
Lead	0.00288	0.0100	0.00236	1	J						

06-03-1726-3 03/29/06 Aqueous 03/30/06 03/31/06 050330L04F MW-5A -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-Mercury was analyzed on 3/30/2006 7:53:33 PM with batch 060329L02F

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	Į
Antimony	ND	0.0150	0.00209	1		Mercury	ND	0.000500	0.0000672	1		
Arsenic	ND	0.0100	0.00308	1		Molybdenum	0.00427	0.00500	0.000800	1	J,E	Š
Barium	0.141	0.010	0.000719	1		Nickel	ND	0.00500	0.00137	1		
Beryllium	ND	0.00100	0.000176	1		Selenium	ND	0.0150	0.00295	1		
Cadmium	ND	0.00500	0.000350	1		Silver	ND	0.00500	0.000400	1		
Chromium	0.00770	0.00500	0.000350	1		Thallium	ND	0.0150	0.00233	1		
Cobalt	ND	0.00500	0.000696	1		Vanadium	0.00401	0.00500	0.000314	1		J
Copper	0.00288	0.00500	0.00134	1	J,B	Zinc	0.0121	0.0100	0.000848	1	Е	3
l ead	0.00337	0.0100	0.00236	1	J							

RL - Reporting Limit

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/29/06

Work Order No:

06-03-1726

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

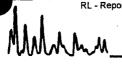
Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01


Page 2 of 2

	Lab Sample	Date		Date	Date		
Client Sample Number	Number	Collected	Matrix	Prepared	Analyzed	QC Batch ID	
Method Blank		N/A*	Aqueous	03/29/06	03/30/06	060329L02F	

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

<u>Parameter</u> Result RL MDL DF Qual ND 0.000500 0.0000672 Mercury Hothod Blank 03/31/06 060330 045

Metriog Blank		2.0	:-, € 3 = 6 097-	J1-UU3-5,	966	NA A	queous varau	1/06 - 031.	31/06 0603.	SULU41	
Comment(s):	-Results were eva	luated to the I	MDL, concentra	tions >= t	o the N	MDL but < RL, if four	nd, are qualified wit	th a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL_	<u>DF</u>	<u>Qual</u>
Antimony	ND	0.0150	0.00209	1		Molybdenum	0.00126	0.00500	0.000800	1	J
Arsenic	ND	0.0100	0.00308	1		Nickel	ND	0.00500	0.00137	1	
Barium	ND	0.0100	0.000719	1		Selenium	ND	0.0150	0.00295	1	
Beryllium	ND	0.00100	0.000176	1		Silver	ND	0.00500	0.000400	1	
Cadmium	ND	0.00500	0.000350	1		Thallium	0.00242	0.0150	0.00233	1	J
Chromium	ND	0.00500	0.000350	1		Vanadium	ND	0.00500	0.000314	1	
Cobalt	ND	0.00500	0.000696	1		Zinc	0.00158	0.0100	0.000848	1	J
Copper	0.00239	0.00500	0.00134	1	J	Lead	ND	0.0100	0.00236	1	

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

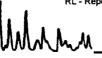
Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:


06-03-1726

EPA 3005A Filt.

EPA 6010B

03/29/06

Project: BOU	Groundwat	er Monit	oring 2006	(PAC \	Vells	Units: 5) / 17653-0	06-01				mg/ Page 1 of	
Client Sample Numb	р ег			Sample mber		Date Collected	Matrix	Da Prepa		Date Analyzed	QC Batch ID	
MW-7			06-0	3-1726-1	模	03/29/06	Aqueous	03/3	0/06	03/31/06	060330L04F	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	<u>Re</u>	<u>sult</u>	<u>RL</u>	MDL	<u>D</u> F	Qual
Calcium	102	0.100	0.00932	1	_	Potassium		5.58	0.50	0.056		
Magnesium	34.0	0.1	0.00328	1	В	Sodium		39.6	0.5	0.019	2 1	В
MW-5			06-0	13-1726-2	2	03/29/06	Aqueous	03/3	0/06	[⊋] 03/31/06	060330L04F	2.15
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter	Re	sult	RL	MDL	DF	Qual
Calcium	108	0.100	0.00932	1		Potassium		5.95	0.50	0.056		. <u> </u>
Magnesium	31.3	0.1	0.00328	1	В	Sodium		38.6	0.5	0.019		В
MW-5A			06-0	3-1726-3		03/29/06	Áqueous	03/3	0/06	. 03/31/06	060330L04F	
							_					
<u>Parameter</u>	Result	<u>RL</u>	MDL	DF	Qual	<u>Parameter</u>	<u>Re</u>	<u>sult</u>	RL	<u>MDL</u>	<u>DF</u>	Qual
Calcium Magnesium	107 30. 6	0.100 0.1	0.00932 0.00328	1	В	Potassium Sodium		5.82 37.8	0.50 0.5	0.056 0.019		
Method Blank	00.0	0.1	THE AND SERVICE OF THE A	01-003-5	GACTIT	N/A	Aqueous	03/3		0.019	2 060330L04F	B
Comment(s): -F	Results were eva	luated to the	MDL. concentra	ations >=	to the I	MDI but < RI if	f found, are qu	alified wi	th a ".l" :	flag		300,000
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter	_	sult	RL	MDL	DF	Qual
Calcium	ND	0.100	0.00932	1		Potassium		ID	0.500			
Magnesium	0.00427	0.100	0.00328	1	J	Sodium	C	.0207	0.500			J

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

Units:

03/29/06

06-03-1726

EPA 3005A Filt.

EPA 200.8

ma/l

						Units:				mg/∟
Project: BO	U Groundwat	er Monit	oring 2006 (PAC	Wells	s) / 17653-0	6-01		Р	age 1 of 1
Client Sample Nu	mber			Sample nber		Date Collected	Matrix F	Date Prepared	Date Analyzed	QC Batch ID
MW-7	e F F		2 06-0	3-1726-1	ila -	03/29/06	Aqueous (3/31/06	03/31/06 🔠 (060331L02+
Comment(s):	-Results were eva	luated to the	MDL, concentra	tions >=	to the I	MDL but < RL, if	found, are qualifie	d with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF Qual
Iron	0.0409	0.100	0.00214	1	J,B	Manganese	0.000	447 0.00	0.00001	189 1 J
MW-5			06-0	3-1726-2	2	03/29/06	Aqueous	3/31/06	03/31/06	060331L02
Comment(s):	-Results were eva	luated to the	MDL, concentra	tions >=	to the	MDL but < RL, if	found, are qualifie	d with a "J"	flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Iron	0.0434	0.100	0.00214	1	J,B	Manganese	0.000	232 0.00	0.0000	189 1 J
MW-5A				3-1726-	3	03/29/06	Aqueous)3/31/06	03/31/06	060331L02
Comment(s):	-Results were eva	luated to the	MDL, concentra	tions >=	to the	MDL but < RL, if	found, are qualifie	d with a "J'	' flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>D</u> F	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual
Iron	0.0483	0.100	0.00214	1	J,B	Manganese	0.000	801 0.00	0.0000	189 1 J
Method Blank			099-	10-008-7	705	N/A	Aqueous	3/31/06	03/31/06	060331L02、1
Comment(s):	-Results were eva	iluated to the	e MDL, concentra	tions >=	to the	MDL but < RL, if	found, are qualifie	d with a "J"	flag.	_
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	MDL	DF Qual
Iron	0.00469	0.100	0.00214	1	J	Manganese	ND	0.00	0.0000	189 1
						-				

RL - Reporting Limit ,

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

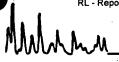
Method:

06-03-1726 EPA 3520B

EPA 8270C(M) Isotope

Dilution

03/29/06


Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Number		Lab Samp Numbei		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-7:	i i i i i i i i i i i i i i i i i i i	06-03-17	26-1 ,	03/29/06	Aqueous	04/03/06	04/06/06	060403L10
Comment(s): -Results were	e evaluated to the	MDL, concentrations	>= to the M	IDL but < RL, if	found, are qua	lified with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	<u>Units</u>		
1,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits			Qual			
Nitrobenzene-d5	89	56-123						
MW-5		06-03-17	26-2	03/29/06	Aqueous	04/03/06	04/06/06	060403L10
Comment(s): -Results were	e evaluated to the	MDL, concentrations	s >= to the M	IDL but < RL, if	found, are qua	alified with a "J"	flag.	
Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits			<u>Qual</u>			
Nitrobenzene-d5	104	56-123						
MW-5A:		06-03-17	26-3	03/29/06	Aqueous	04/03/06	04/06/06	060403L10
Comment(s): -Results were	e evaluated to the	MDL, concentrations	s >= to the M	IDL but < RL, if	found, are qua	alified with a "J"	flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
I,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	REC (%)	Control Limits			<u>Qual</u>			
Nitrobenzene-d5	90	56-123						
Method Blank		099-09-0	04-560	. N/A	Aqueous	04/03/06	±04/05/06	060403L10
Comment(s): -Results were		•				alified with a "J"	flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
,4-Dioxane	ND	2.0	0.40	1		ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits			<u>Qual</u>			
litrobenzene-d5	85	56-123		•				

RL - Reporting Limit ,

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

03/29/06

Work Order No: Preparation:

06-03-1726 EPA 3520B

Method:

EPA 1625CM

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Number		Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID	
		06-03-17	26-1	03/29/06	Aqueous	04/03/06	04/05/06	060403L03	
Parameter Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	<u>Units</u>			
N-Nitrosodimethylamine Surrogates:	7.1 <u>REC (%)</u>	2.0 Control Limits	0.48	1	Qual	ng/L			
1,4-Dichlorobenzene-d4	70	50-130							
MW-5		06-03-17	26-2	03/29/06	Aqueous	04/03/06	04/05/06	-060403L03	
<u>Parameter</u>	Result	<u>RL</u>	MDL.	<u>DF</u>	Qual	<u>Units</u>			
N-Nitrosodimethylamine Surrogates:	64 REC (%)	2 Control Limits	0.48	1	Qual	ng/L		·	
1,4-Dichlorobenzene-d4	67	50-130							
MW-5A		06-03-17	26-3	03/29/06	Aqueous	04/03/06	04/05/06	0604031-03	
Parameter	Result	<u>RL</u>	MDL,	<u>DF</u>	Qual	<u>Units</u>			
N-Nitrosodimethylamine Surrogates:	53 REC (%)	2 Control Limits	0.48	1	<u>Qual</u>	ng/L		•	
1,4-Dichlorobenzene-d4	60	50-130							
Method Blank		099-07-0	w	and a hard a second control of the second of	Aqueous	04/03/06	04/05/06	060403L03 +	
Comment(s): -Results were Parameter	evaluated to the Result	MDL, concentrations <u>RL</u>	s >= to the M MDL	IDL but < RL, if <u>DF</u>	found, are qua Qual	alified with a "J" <u>Units</u>	flag.		
N-Nitrosodimethylamine Surrogates:	ND REC (%)	2.0 Control Limits	0.48	1	Qual	ng/L			
1,4-Dichlorobenzene-d4	78	50-130							

RL - Reporting Limit

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

03/29/06 06-03-1726

Work Order No: Preparation:

EPA 5030B

Method:

EPA 8260B

Units:

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 7

Client Sample Number				Sample umber		Date Collected Matrix p	Date Prepared	Date Analyzed	QC Batch ID	
MW-7			06-03-	1726-1		03/29/06 Aqueoús	03/30/06	03/31/06	060330	L02
Comment(s): -Results were e	valuated to the	e MDL, co	ncentratio	ns >= to	the N	IDL but < RL, if found, are qualified	ed with a "J" f	ag.		<u>.</u>
Parameter	Result	<u>RL</u>	<u>MDL</u>	DF Q	<u> lual</u>	<u>Parameter</u>	Result	RL	<u>MDL</u>	DF Qual
Acetone	9.8	10.0	6.1	1	J	1,3-Dichloropropane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1		2,2-Dichloropropane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1		1,1-Dichloropropene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1		c-1,3-Dichloropropene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1		t-1,3-Dichloropropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1		Ethylbenzene	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1		2-Hexanone	ND	10	1.9	1
2-Butanone	ND	10	4.2	1		Isopropylbenzene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1		p-Isopropyltoluene	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1		Methylene Chloride	ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1		4-Methyl-2-Pentanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1		Naphthalene	ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1		n-Propylbenzene	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1		Styrene	ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1		1,1,1,2-Tetrachloroethane	ND	1.0	0.37	1
Chloroform	0.80	1.0	0.22	1	J	1,1,2,2-Tetrachloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1		Tetrachloroethene	49	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1		Toluene	ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1		1,2,3-Trichlorobenzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1		1,2,4-Trichlorobenzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1		1,1,1-Trichloroethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1		1,1,2-Trichloro-1,2,2-Trifluoroetl	nane 0.86	10.00	0.54	1 J
Dibromomethane	ND	1.0	0.42	1		1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1		Trichloroethene	18	1	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1		Trichlorofluoromethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1		1,2,3-Trichloropropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1		1,2,4-Trimethylbenzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1		1,3,5-Trimethylbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1		Vinyl Acetate	ND	10	3.2	1
1,1-Dichloroethene	0.69	1.0	0.31	1	j	Vinyl Chloride	ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		p/m-Xylene	ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1		o-Xylene	ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1		Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
Surrogates:	REC (%)	Control	<u>Limits</u>	<u>C</u>	<u>Qual</u>	Surrogates:	<u>REC (%</u>	• —	Limits	<u>Qual</u>
Dibromofluoromethane	128	74-140				1,2-Dichloroethane-d4	128	74-146		
Toluene-d8	102	88-112				1,4-Bromofluorobenzene	75	74-110		

03/29/06

06-03-1726

Analytical Report

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

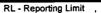
EPA 5030B EPA 8260B

Date

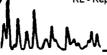
Method: Units:

Date

ug/L


Date

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01


Lab Sample

Page 2 of 7

Client Sample Number			Num	ber		Collected	Matrix	Prepared .	Analyzed	QC Bate	ch ID
	7		06-03	-1726-2	le.	- 03/29/06	Aqueous	03/30/06	03/31/06	+ 060330	L02
Comment(s): -Results were e	valuated to the	MDL, co	ncentrati	ons >= to	the N	/IDL but < RL, if	found, are qualit	fied with a "J" fl	ag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Result	<u>RL</u>	MDL.	DF Qual
Acetone	13	10	6.1	1		1,3-Dichloropre	opane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1		2,2-Dichloropre		ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1		1,1-Dichloropro		ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1		c-1,3-Dichloro		ND	0.50	0.45	1
Bromodichloromethane	0.30	1.0	0.27	1	J	t-1,3-Dichlorop	ropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1		Ethylbenzene	•	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1		2-Hexanone		ND	10	1.9	1
2-Butanone	ND	10	4.2	1		Isopropylbenze	ene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1		p-Isopropyltolu	ene	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	- 1		Methylene Chi	oride	ND	10	2.6	. 1
tert-Butylbenzene	ND	1.0	0.17	1		4-Methyl-2-Per	ntanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1		Naphthalene		ND	10	0.95	1
Carbon Tetrachloride	0.93	0.50	0.42	1		n-Propylbenze	ne	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1		Styrene		ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	0.37	1
Chloroform	1.4	1.0	0.22	1		1,1,2,2-Tetracl	hloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1		Tetrachloroeth	ene	75	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1		Toluene		ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1		1,2,3-Trichloro	benzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1		1,2,4-Trichloro	benzene	· ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1		1,1,1-Trichloro	ethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1			-1,2,2-Trifluoroe		10.0	0.54	1 J
Dibromomethane	ND	1.0	0.42	1		1,1,2-Trichloro		ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1		Trichloroethen	-	32	1	0.30	.1
1,3-Dichlorobenzene	ND	1.0	0.38	1		Trichlorofluoro		ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1		1,2,3-Trichloro		ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1		1,2,4-Trimethy		ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1		1,3,5-Trimethy	1benzene	ND	1.0	0.19	1
1,2-Dichloroethane	0.26	0.50	0.22	1	J	Vinyl Acetate		ND	10	3.2	1
1,1-Dichloroethene	1.9	1.0	0.31	1		Vinyl Chloride		ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		p/m-Xylene		ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1		o-Xylene	E45 (1 4705)	ND	1.0	0.21	1 1
1,2-Dichloropropane	ND <u>REC (%)</u>	1.0 Control (0.28	•	Quai	Methyl-t-Butyl Surrogates:	⊨tner (M⊺BE)	ND BEC (%/	1.0	0.29	•
Surrogates:			<u>-1111172</u>		<u> </u>			<u>REC (%</u>		LITHIS	<u>Qual</u>
Dibromofluoromethane	119	74-140				1,2-Dichloroeth		119	74-146		
Toluene-d8	102	88-112				1,4-Bromofluo	robenzene	78	74-110		

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

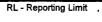
Work Order No: Preparation:

Method:

Units:

EPA 5030B EPA 8260B

06-03-1726


03/29/06

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 3 of 7

Client Sample Number			Lab Sai Numb			Date Collected Matrix P	Date repared	Date Analyzed	QC Bat	ch ID
MW-5A-	Hille F		06-03-	1726-3		03/29/06 Aqueous 0	3/31 / 06 🚅	03/31/06	060331	L01
Comment(s): -Results were e	evaluated to th	e MDL, co	ncentratio	ons >= to t	he N	IDL but < RL, if found, are qualified	d with a "J" f	lag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF Q	<u>ual</u>	Parameter	Result	<u>RL</u>	<u>MDL</u>	DF Qual
Acetone	ND	10	6.1	1		1,3-Dichloropropane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1		2,2-Dichloropropane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1		1,1-Dichloropropene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1		c-1,3-Dichloropropene	ND	0.50	0.45	1
Bromodichloromethane	0.33	1.0	0.27	1	J	t-1,3-Dichloropropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1		Ethylbenzene	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1		2-Hexanone	ND	10	1.9	1
2-Butanone	ND	10	4.2	1		Isopropylbenzene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1		p-Isopropyltoluene	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1		Methylene Chloride	ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1		4-Methyl-2-Pentanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1		Naphthaiene	ND	10	0.95	1
Carbon Tetrachloride	1.1	0.5	0.42	1		n-Propylbenzene	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1		Styrene	ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1		1,1,1,2-Tetrachloroethane	ND	1.0	0.37	1
Chloroform	1.6	1.0	0.22	1		1,1,2,2-Tetrachloroethane	ND	1.0	0.37	1
Chioromethane	ND	10	1.8	1		Tetrachloroethene	75	1	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1		Toluene	ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1		1,2,3-Trichlorobenzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	. 1		1,2,4-Trichlorobenzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1		1,1,1-Trichloroethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1		1,1,2-Trichloro-1,2,2-Trifluoroeth	ane 1.8	10.0	0.54	1,
Dibromomethane	ND	1.0	0.42	1		1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1		Trichloroethene	32	. 1	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1		Trichlorofluoromethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1		1,2,3-Trichloropropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1		1,2,4-Trimethylbenzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1		1,3,5-Trimethylbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	0.32	0.50	0.22	1	j	Vinyl Acetate	ND	10	3.2	1
1,1-Dichloroethene	1.3	1.0	0.31	1		Vinyl Chloride	ND	0.50	0.33	1
c-1,2-Dichloroethene	ND.	1.0	0.35	1		p/m-Xylene	ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1		o-Xylene	ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
Surrogates:	<u>REC (%)</u>	Control	LIMITS	ā	<u>ual</u>	Surrogates:	<u>REC (%</u>		<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	128	74-140				1,2-Dichloroethane-d4	127	74-146		
Toluene-d8	100	88-112				1,4-Bromofluorobenzene	.76	74-110		

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

06-03-1726

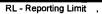
Method:

Preparation:

EPA 5030B

EPA 8260B

03/29/06


Units:

ug/L

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 4 of 7

			Numb	er	Collected Matrix p	Prepared	Analyzed	QC Batch	n ID
LTB-032906A			06-03-	726-4	03/29/06 Aqueous (03/30/06	03/31/06	060330L	02
Comment(s): -Results were ev	aluated to the	e MDL, cor	ncentratio	ns >= to the N	ADL but < RL, if found, are qualified	ed with a "J" f	lag.		-
Parameter	Result	<u>RL</u>	<u>MDL</u>	DF Qual	Parameter	Result	RL	MDL	DF Qual
Acetone	9.0	10.0	6.1	1 J	1,3-Dichloropropane	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloropropane	ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloropropene	ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropropene	ND	0.50	0.45	1
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropropene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone	ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzene	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluene	ND	1.0	0.21	1
sec-Butylbenzene	ND .	1.0	0.21	1	Methylene Chloride	ND	10	2.6	1
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Pentanone	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene	ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene	ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.37	1
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrachloroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroethene	ND	1.0	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene	ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobenzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobenzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1,1,1-Trichloroethane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1,2,2-Trifluoroett	nane ND	10	0.54	1
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroethane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND ·	1.0	0.24	1	Trichloroethene	ND	1.0	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluoromethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropropane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylbenzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylbenzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate	ND	10	3.2	1
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride	ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene	ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene	ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
<u>Surrogates:</u>	<u>REC (%)</u>	Control I	<u>Limits</u>	<u>Qual</u>	Surrogates:	<u>REC (%</u>) Control I	<u>_imits</u>	<u>Qual</u>
Dibromofluoromethane	133	74-140			1,2-Dichloroethane-d4	135	74-146		
Toluene-d8	96	88-112			1,4-Bromofluorobenzene	76	74-110		

DF - Dilution Factor

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Date

Date

Method:

Units:

Date

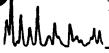
EPA 5030B EPA 8260B ug/L

03/29/06

06-03-1726

Page 5 of 7

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01


Lab Sample

QC Batch ID

Temposaria Properties Pro	Client Sample Number			Lab Sa Numl			Date Collected Matrix	Date Prepared	Date Analyzed	QC Bate	ch ID
Comment(s): Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.	THE PARTY WHITE AND PROPERTY OF THE PARTY OF	1 FALL		The Property and	edicate to the control of	1977 (N.) 1877 (N.)	CONTROL OF THE CONTRO	nanamiyaanyanyinta sassista	may sharmon in the state of	060330	L02 📜
Parameter Result RL MDL DE Qual Parameter Result RL MDL DE Qual Accidone 19 10 6.1 1 1.3Dichloropropane ND 1.0 0.30 1 Benzene 0.33 0.50 0.62 1 2.2-Dichloropropane ND 1.0 0.40 1 Bromochicomethane ND 1.0 0.47 1 1.1-Dichloropropene ND 0.50 0.45 1 Bromochichoromethane ND 1.0 0.62 1 Ethylbenzene ND 0.50 0.31 1 Bromoderhane ND 1.0 0.52 1 Ethylbenzene ND 1.0 0.50 0.31 1 Bromomethane ND 1.0 0.52 1 Ethylbenzene ND 1.0 0.52 1 1 2-Hexplorephotenzene ND 1.0 0.24 1 1 2-Hexplorephotenzene ND 1.0 0.24 1				ncentratio	ons >= to	o the M	MDL but < RL, if found, are quali	fied with a "J" fl	ag.		
Acetone										MDL	DF Qual
Benzene D.33 D.50 D.26 D.27 D.22 D.10-Inforopropane ND D.0 D.0 D.0 D.1 D.0	Acetone	19		6.1			1.3-Dichloropropane	ND.		0.30	
Bromobenzene						.1		–			
Bromochloromethane					1	•					1
Bromodichloromethane					1						
Bromoform ND 1.0 0.62 1 Ethylbenzene ND 1.0 0.17 1 1 1 1 1 1 1 1 1			1.0	0.27	1					0.31	1
Bromomethane					1						1
2-Butanone 7.6 10.0 4.2 1 J Isopropytbenzene ND 1.0 0.24 1 n-Butylbenzene ND 1.0 0.29 1 p-Isopropytbenzene ND 1.0 0.24 1 tert-Butylbenzene ND 1.0 0.29 1 Methylene Chloride ND 10 2.6 1 tert-Butylbenzene ND 1.0 0.17 1 4-Methyle-2-Pentanone ND 10 2.4 1 tert-Butylbenzene ND 1.0 0.17 1 4-Methyle-2-Pentanone ND 10 0.95 1 carbon Disulfide ND 10 1.0 1 Naphthalene ND 10 0.95 1 Carbon Disulfide ND 0.50 0.42 1 n-Propylbenzene ND 1.0 0.30 1 Chlorobenzene ND 1.0 0.36 1 Styrene ND 1.0 0.30 1 Chlorobethane ND 1.0 0.52 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloromethane ND 1.0 0.22 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloromethane ND 1.0 0.22 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chlorotoluene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 Chlorotoluene ND 1.0 0.34 1 Toluene 1.2 1.0 0.35 1 Chlorotoluene ND 1.0 0.35 1 1 Chlorotoluene ND 1.0 0.45 1 1,2,3-Trichloroethane ND 1.0 0.39 1 Chloromethane ND 1.0 0.45 1 1,2,4-Trichloroethane ND 1.0 0.39 1 Chloromethane ND 1.0 0.45 1 1,2,4-Trichloroethane ND 1.0 0.35 1 Chloromethane ND 1.0 0.45 1 1,1,1-Trichloroethane ND 1.0 0.35 1 Chloromethane ND 1.0 0.45 1 1,1,1-Trichloroethane ND 1.0 0.35 1 Chloromethane ND 1.0 0.42 1 1,1,1-Trichloroethane ND 1.0 0.35 1 Chloromethane ND 1.0 0.42 1 1,1,1-Trichloroethane ND 1.0 0.35 1 Chloromethane ND 1.0 0.42 1 1,1,1-Trichloroethane ND 1.0 0.54 1 Chloromethane ND 1.0 0.30 1 1,2-Trichloroethane ND 1.0 0.54 1 Chloromethane ND 1.0 0.30 1 1,2-Trichloroethane ND 1.0 0.36 1 Chloromethane ND 1.0 0.30 1 1,2-Trichloroethane ND 1.0 0.36 1 Chloromethane ND 1.0 0.30 1 1,2-Trichloroethane ND 1.0 0.36 1 Chloromethane ND 1.0 0.31 1 Trichloroethane ND 1.0 0.36 1 Chloromethane ND 1.0 0.31 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.31 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.33 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.31 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.33 1 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.31 1 1,2-Trichloroethane ND 1.0 0.36 1 Chlorotoluene ND 1.0 0.35 1 1 Chlo	=:=::::::::::::::::::::::::::::::::::::				1		•				1
n-Butylbenzene ND 1.0 0.29 1 p-Isopropyltoluene ND 1.0 0.21 1 sec-Butylbenzene ND 1.0 0.21 1 Methylene Chloride ND 10 2.6 1 carbon Disulfide ND 1.0 0.17 1 4-Methyl-2-Pentanone ND 10 0.95 1 Carbon Disulfide ND 1.0 0.50 0.42 1 n-Propylbenzene ND 1.0 0.95 1 Chlorobenzene ND 1.0 0.36 1 Styrene ND 1.0 0.30 1 Chloroform ND 1.0 0.52 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chlorofoluene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 2-Chloro						J.		_			1
Sec-Butylbenzene ND 1.0 0.21 1 Methylene Chloride ND 10 2.6 1						·					-
tert-Bulylbenzene ND 1.0 0.17 1 4-Methyl-2-Pentanone ND 10 2.4 1 Carbon Disulfide ND 10 1.0 1.0 1 Naphthalene ND 10 0.95 1 Carbon Tetrachloride ND 0.50 0.42 1 nPropylbenzene ND 1.0 0.30 1 Chlorobenzene ND 1.0 0.36 1 Styrene ND 1.0 0.29 1 Chlorobenzene ND 1.0 0.52 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND 1.0 0.37 1 Chlorothane ND 10 1.8 1 Tetrachloroethane ND 1.0 0.39 1 2-Chlorotoluene ND 1.0 0.24 1 Toluene ND 1.0 0.35 1 4-Chlorotoluene ND 1.0 0.30 1 1,2,3-Trichlorobenzene ND 1.0 0.35 1 Dibromochloromethane ND 1.0 0.45 1 1,2,4-Trichloroethzene ND 1.0 0.32 1 1.2-Dibromo-3-Chloropropane ND 5.0 2.5 1 1,1,1-Trichloroethane ND 1.0 0.32 1 1.2-Dibromoethane ND 1.0 0.81 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1.2-Dibromoethane ND 1.0 0.42 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1.2-Dibromoethane ND 1.0 0.38 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1.2-Dibromoethane ND 1.0 0.38 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1.2-Dibromoethane ND 1.0 0.38 1 Trichloroethane ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.38 1 Trichlorothane ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloroppane ND 5.0 2.3 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloroppane ND 5.0 2.3 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloroppane ND 5.0 2.3 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloroppane ND 5.0 2.3 1 1,1-Dichloroethane ND 1.0 0.30 1 1,2,3-Trichloroppane ND 5.0 2.3 1 1,1-Dichloroethane ND 1.0 0.35 1 1,2,3-Trichloroppane ND 1.0 0.36 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1.0 0.30 1 1,1-Dichloroethane ND 1.0 0.35 1 1,3,5-Trimethylbenzene ND 1	•										="
Carbon Disulfide ND 10 1.0 1 Naphthalene ND 10 0.95 1 Carbon Tetrachloride ND 0.50 0.42 1 n-Propylbenzene ND 1.0 0.30 1 Chlorobenzene ND 1.0 0.36 1 Styrene ND 1.0 0.29 1 Chloroform ND 1.0 0.52 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chlorofoluene ND 1.0 0.24 1 Tetrachloroethene ND 1.0 0.35 1 4-Chlorotoluene ND 1.0 0.35 1 1,2,3-Trichloroethane ND 1.0 0.35 1 L2-Dibromofuloromethan	•	_			1		•				1
Carbon Tetrachloride ND 0.50 0.42 1 n-Propylbenzene ND 1.0 0.30 1 Chlorobenzene ND 1.0 0.36 1 Styrene ND 1.0 0.29 1 Chlorobenzene ND 1.0 0.52 1 1,1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chloroform ND 1.0 0.22 1 1,1,2-Tetrachloroethane ND 1.0 0.37 1 Chlorotdulene ND 1.0 0.24 1 Tetrachloroethene ND 1.0 0.29 1 4-Chlorotdulene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 4-Chlorotdulene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 2-Chlorotdulene ND 1.0 0.45 1 1,2-Trichlorobenzene ND 1.0 0.39 1 1,2-Dichloromethane	•				1		•				1
Chlorobenzene					1				-		1
Chloroethane											
Chloroform							<u> </u>				1
Chlormethane ND 10 1.8 1 Tetrachloroethene ND 1.0 0.29 1 2-Chlorotoluene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 4-Chlorotoluene ND 1.0 0.30 1 1,2,3-Trichlorobenzene ND 1.0 0.39 1 Dibromochloromethane ND 1.0 0.45 1 1,2,4-Trichlorobenzene ND 1.0 0.35 1 1,2-Dibromo-3-Chloropropane ND 5.0 2.5 1 1,1,1-Trichloroethane ND 1.0 0.32 1 1,2-Dibromoethane ND 1.0 0.81 1 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1.0 0.54 1 Dibromomethane ND 1.0 0.42 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1,2-Dichlorobenzene ND 1.0 0.38 1 Trichloroethene ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.38 1 Trichloroethene ND 1.0 0.36 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 1.0 0.36 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 1.0 0.36 1 1,1-Dichloroethane ND 1.0 0.53 1 1,2,3-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.10 1.0 0.10 1.0 1.0 1.0 1.0 1.0 1											· · ·
2-Chlorotoluene ND 1.0 0.24 1 Toluene 1.2 1.0 0.35 1 4-Chlorotoluene ND 1.0 0.30 1 1,2,3-Trichlorobenzene ND 1.0 0.39 1 Dibromochloromethane ND 1.0 0.45 1 1,2,4-Trichlorobenzene ND 1.0 0.35 1 1,2-Dibromo-3-Chloropropane ND 5.0 2.5 1 1,1,1-Trichloroethane ND 1.0 0.32 1 1,2-Dibromoethane ND 1.0 0.81 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1,2-Dibromoethane ND 1.0 0.42 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1,2-Dibromoethane ND 1.0 0.42 1 Trichloroethane ND 1.0 0.54 1 1,2-Dichlorobenzene ND 1.0 0.38 1 Trichloroethene ND 1.0 0.36 1											1
A-Chlorotoluene											
Dibromochloromethane ND 1.0 0.45 1 1,2,4-Trichlorobenzene ND 1.0 0.35 1			-		1						1
1,2-Dibromo-3-Chloropropane ND 5.0 2.5 1 1,1,1-Trichloroethane ND 1.0 0.32 1 1,2-Dibromoethane ND 1.0 0.81 1 1,1,2-Trichloroethane ND 10 0.54 1 Dibromomethane ND 1.0 0.42 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1,2-Dichlorobenzene ND 1.0 0.24 1 Trichloroethane ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.38 1 Trichloroethane ND 10 0.36 1 1,4-Dichloroethanzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 1.0 0.36 1 1,1-Dichloroethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.32											
1,2-Dibromoethane							, ,				1
Dibromomethane ND 1.0 0.42 1 1,1,2-Trichloroethane ND 1.0 0.54 1 1,2-Dichlorobenzene ND 1.0 0.24 1 Trichloroethene ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.38 1 Trichlorofluoromethane ND 10 0.36 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 5.0 2.3 1 Dichlorodifluoromethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 1.0 0.32 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1	• •										· ·
1,2-Dichlorobenzene ND 1.0 0.24 1 Trichloroethene ND 1.0 0.30 1 1,3-Dichlorobenzene ND 1.0 0.38 1 Trichlorofluoromethane ND 10 0.36 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 5.0 2.3 1 Dichlorodifluoromethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.21 1	•		1.0	0.42	1						1
1,3-Dichlorobenzene ND 1.0 0.38 1 Trichlorofluoromethane ND 10 0.36 1 1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 5.0 2.3 1 Dichlorodifluoromethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Acetate ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1				0.24	1		• • • • • • • • • • • • • • • • • • • •				1
1,4-Dichlorobenzene ND 1.0 0.30 1 1,2,3-Trichloropropane ND 5.0 2.3 1 Dichlorodifluoromethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethane ND 1.0 0.31 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.38 1 1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.29 1 <t< td=""><td>•</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>	•				1						1
Dichlorodifluoromethane ND 1.0 0.27 1 1,2,4-Trimethylbenzene ND 1.0 0.26 1 1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.38 1 t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1 1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual			1.0	0.30	1						1
1,1-Dichloroethane ND 1.0 0.53 1 1,3,5-Trimethylbenzene ND 1.0 0.19 1 1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.38 1 t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1 1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual	•	ND	1.0	0.27	1						1
1,2-Dichloroethane ND 0.50 0.22 1 Vinyl Acetate ND 10 3.2 1 1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.38 1 t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1 1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Dibromofluoromethane 117 74-140 1,2-Dichloroethane-d4 116 74-146 Vinyl Acetate ND 1.0 0.33 1 0.0 1	1,1-Dichloroethane	ND	1.0	0.53	1				1.0	0.19	1
1,1-Dichloroethene ND 1.0 0.31 1 Vinyl Chloride ND 0.50 0.33 1 c-1,2-Dichloroethene ND 1.0 0.35 1 p/m-Xylene ND 1.0 0.38 1 t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1 1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Dibromofluoromethane 117 74-140 1,2-Dichloroethane-d4 116 74-146	•	ND	0.50	0.22	1				10	3.2	1
t-1,2-Dichloroethene ND 1.0 0.29 1 o-Xylene ND 1.0 0.21 1 1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Dibromofluoromethane 117 74-140 1,2-Dichloroethane-d4 116 74-146	1,1-Dichloroethene	ND	1.0	0.31	1		Vinyl Chloride	ND	0.50	0.33	1
1,2-Dichloropropane ND 1.0 0.28 1 Methyl-t-Butyl Ether (MTBE) ND 1.0 0.29 1 Surrogates: REC (%) Control Limits Qual Surrogates: REC (%) Control Limits Qual Dibromofluoromethane 117 74-140 1,2-Dichloroethane-d4 116 74-146	c-1,2-Dichloroethene	ND	1.0	0.35	1		p/m-Xylene	· ND	1.0	0.38	1
Surrogates:REC (%)Control LimitsQualSurrogates:REC (%)Control LimitsQualDibromofluoromethane11774-1401,2-Dichloroethane-d411674-146	t-1,2-Dichloroethene	ND	1.0	0.29	1		o-Xylene	ND	1.0	0.21	1
Dibromofluoromethane 117 74-140 1,2-Dichloroethane-d4 116 74-146	1,2-Dichloropropane	ND	1.0	0.28	1		Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.29	1
• • • • • • • • • • • • • • • • • • • •		REC (%)	Control I	<u>Limits</u>		Qual			<u>Control</u>	<u>Limits</u>	Qual
• • • • • • • • • • • • • • • • • • • •	Dibromofluoromethane	117	74-140				1,2-Dichloroethane-d4	116	74-146		
							•				

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

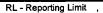
Preparation:

Method:

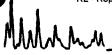
Units:

EPA 8260B ug/L

03/29/06


06-03-1726

EPA 5030B


Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 6 of 7

Client Sample Number			Lab Sai Numb		Date Collected	Matrix P	Date repared	Date Analyzed	QC Bate	ch ID	
Method Blank		100	/ 099-10	-006-17,505	NA Ac	jueous 💛 0	3/30/06	03/31/06	060330	L02	
Comment(s): -Results were e	valuated to the	e MDL. co	ncentratio	ons >= to the i	MDL but < RL, if foun	d. are qualifie	d with a "J" fl	ag.			
Parameter	Result	RL	MDL	DF Qual		-, ,	Result	RL.	MDL	DF (Qual
Acetone	ND	10	6.1	1	1,3-Dichloropropan	e ·	ND	1.0	0.30	1	
Benzene	ND	0.50	0.26	1	2,2-Dichloropropan		ND	1.0	0.40	1	
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloropropen		ND	1.0	0.21	1	
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloroprop		ND	0.50	0.45	1	
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloroprope		ND	0.50	0.31	1	
Bromoform	ND	1.0	0.62	1	Ethylbenzene		ND	1.0	0.17	1	
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1	
2-Butanone	ND	10	4.2	1	Isopropylbenzene		ND	1.0	0.24	1	
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluene		ND	1.0	0.21	1	
sec-Butylbenzene	· ND	1.0	0.21	1	Methylene Chloride	•	2.8	10.0	2.6	1	J
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Pentano		ND	10	2.4	1	
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1	
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene		ND	1.0	0.30	1	
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1	
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.37	1	
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrachloro		ND	1.0	0.37	1	
Chloromethane	ND	10	1.8	1	Tetrachloroethene		ND	1.0	0.29	1	
2-Chlorotoluene	ND	1.0	0.24	1	Toluene		ND	1.0	0.35	1	
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobenz	zene	ND	1.0	0.39	1	
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobenz		ND	1.0	0.35	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	1	1.1.1-Trichloroetha	ne	ND	1.0	0.32	1	
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1,2	2-Trifluoroeth	ane ND	10	0.54	1	
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroetha		ND	1.0	0.54	1	
1.2-Dichlorobenzene	· ND	1.0	0.24	1	Trichloroethene		ND	1.0	0.30	1	
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluorometh	nane	ND	10	0.36	1	
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloroprop	ane	ND	5.0	2.3	1	
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylben	zene	ND	1.0	0.26	1	
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylben	zene	ND	1.0	0.19	1	
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate		ND	10	3.2	1	
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride		ND	0.50	0.33	1	
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		ND	1.0	0.38	1	
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		ND	1.0	0.21	1	
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Ethe	r (MTBE)	ND	1.0	0.29	1	
Surrogates:	<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:		<u>REC (%</u>	<u>Control</u>	<u>Limits</u>	9	Qual
Dibromofluoromethane	112	74-140			1,2-Dichloroethane	-d 4	112	74-146			
Toluene-d8	99	88-112			1.4-Bromofiuorober	nzene	82	74-110			

DF - Dilution Factor ,

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

06-03-1726

Work Order No:

Units:

Date

Preparation:

Method:

Date

Date

ug/L

03/29/06

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Lab Sample

Page 7 of 7

EPA 5030B

EPA 8260B

Client Sample Number			Numl		Collected	Matrix	Prepared	Analyzed	QC Bat	ch ID
Method Blank			etropic indicates	-006-17,512			COLO COMO DE MATERIA DE COMPONENTO	03/31/06	ng deservity	
Induou Dialix			1033-10	7-000-17,512	NA C	Aqueous	03/31/06	03/31/0 5	060331	LUI
Comment(s): -Results were ev	aluated to th	e MDL, co	ncentratio	ons >= to the M	ADL but < RL, if fo	und, are qualifi	ed with a "J" fl	ag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL.	DF Qual	<u>Parameter</u>		Result	RL	MDL	DF Qual
Acetone	ND	10	6.1	1	1,3-Dichloroprop	oane ·	ND	1.0	0.30	1
Benzene	ND	0.50	0.26	1	2,2-Dichloroprop		ND	1.0	0.40	1
Bromobenzene	ND	1.0	0.47	1	1,1-Dichloroprop		ND	1.0	0.21	1
Bromochloromethane	ND	1.0	0.68	1	c-1,3-Dichloropr	opene	ND	0.50	0.45	- 1
Bromodichloromethane	ND	1.0	0.27	1	t-1,3-Dichloropro	ppene	ND	0.50	0.31	1
Bromoform	ND	1.0	0.62	1	Ethylbenzene	•	ND	1.0	0.17	1
Bromomethane	ND	10	2.9	1	2-Hexanone		ND	10	1.9	1
2-Butanone	ND	10	4.2	1	Isopropylbenzen	е	ND	1.0	0.24	1
n-Butylbenzene	ND	1.0	0.29	1	p-Isopropyltoluer	ne	ND	1.0	0.21	1
sec-Butylbenzene	ND	1.0	0.21	1	Methylene Chlori	ide	4.2	10.0	2.6	1 J
tert-Butylbenzene	ND	1.0	0.17	1	4-Methyl-2-Penta	anone .	ND	10	2.4	1
Carbon Disulfide	ND	10	1.0	1	Naphthalene		ND	10	0.95	1
Carbon Tetrachloride	ND	0.50	0.42	1	n-Propylbenzene	•	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.36	1	Styrene		ND	1.0	0.29	1
Chloroethane	ND	1.0	0.52	1	1,1,1,2-Tetrachic	oroethane	ND	1.0	0.37	1
Chloroform	ND	1.0	0.22	1	1,1,2,2-Tetrachle	oroethane	ND	1.0	0.37	1
Chloromethane	ND	10	1.8	1	Tetrachloroether	ne .	ND	1.0	0.29	1
2-Chlorotoluene	ND	1.0	0.24	1	Toluene		ND	1.0	0.35	1
4-Chlorotoluene	ND	1.0	0.30	1	1,2,3-Trichlorobe	enzene	ND	1.0	0.39	1
Dibromochloromethane	ND	1.0	0.45	1	1,2,4-Trichlorobe	enzene	ND	1.0	0.35	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2,5	1	1,1,1-Trichloroet	hane	ND	1.0	0.32	1
1,2-Dibromoethane	ND	1.0	0.81	1	1,1,2-Trichloro-1	,2,2-Trifluoroet	hane ND	10	0.54	1
Dibromomethane	ND	1.0	0.42	1	1,1,2-Trichloroet	hane	ND	1.0	0.54	1
1,2-Dichlorobenzene	ND	1.0	0.24	1	Trichloroethene		· ND	1.0	0.30	1
1,3-Dichlorobenzene	ND	1.0	0.38	1	Trichlorofluorom	ethane	ND	10	0.36	1
1,4-Dichlorobenzene	ND	1.0	0.30	1	1,2,3-Trichloropr	opane	ND	5.0	2.3	1
Dichlorodifluoromethane	ND	1.0	0.27	1	1,2,4-Trimethylb	enzene	ND	1.0	0.26	1
1,1-Dichloroethane	ND	1.0	0.53	1	1,3,5-Trimethylb	enzene	ND	1.0	0.19	1
1,2-Dichloroethane	ND	0.50	0.22	1	Vinyl Acetate		ND	10	3.2	1
1,1-Dichloroethene	ND	1.0	0.31	1	Vinyl Chloride		ND	0.50	0.33	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	p/m-Xylene		· ND	1.0	0.38	1
t-1,2-Dichloroethene	ND	1.0	0.29	1	o-Xylene		ND	1.0	0.21	1
1,2-Dichloropropane	ND	1.0	0.28	1	Methyl-t-Butyl Et	her (MTBE)	ND	1.0	0.29	1
<u>Surrogates:</u>	<u>REC (%)</u>	Control 1	<u>.imits</u>	<u>Qual</u>	Surrogates:		<u>REC (%</u>	<u>Control</u>	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	122	74-140			1,2-Dichloroetha		122	74-146		
Toluene-d8	104	88-112			1,4-Bromofluorol	benzene	78	74-110		

DF - Dilution Factor ,

EPA 8260B Tentatively Identified Compound List

Work Order

CEL Sample Client ID

Q Compound

CAS NUMBER

RT

On Column Conc. Estimated Conc.

ug/L

<u>ug/L</u>

06-03-1726

No TICs Found

Q Qualifier RT Retention Time

Muhmu

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation: Method:

03/29/06

06-03-1726 EPA 5030B

SRL 524M-TCP

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 1

Client Sample Number		Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-7		06-03	1726-1	03/29/06:	Aqueous	03/30/06	03/30/06+	060330L01
<u>Parameter</u>	Result	RL	<u>MDL</u>	<u>DF</u>	Qual	<u>Units</u>		
1,2,3-Trichloropropane	0.018	0.005	0.00081	1		ug/L		
MW-5		06-03	1726-2	03/29/06	Aqueous	03/30/06	03/30/06	060330L01/
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,2,3-Trichloropropane	0.13	0.01	0.00081	2		ug/L		
MW-5A		06-03	-1726-3	03/29/06	Aqueous	03/30/06	03/30/06	060330L01
<u>Parameter</u>	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,2,3-Trichloropropane	0.14	0.01	0.0016	2		ug/L		
Method Blank		099-1	0-022-215	N/A :	Aqueous	03/30/06	03/30/06	// 060330L01
Comment(s): -Results were	evaluated to the	/IDL, concentrati	ons >= to the MI	OL but < RL, if	found, are qua	lified with a "J"	flag.	
Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
1,2,3-Trichloropropane	ND	0.0050	0.00081	1		ug/L		

RL - Reporting Limit , 7440

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

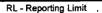
Pasadena, CA 91107-6024

Date Received:

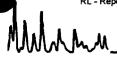
03/29/06

Work Order No:

06-03-1726


Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 1 of 2


		· L	ab Sample	Numbe		Mate	··-		
Client Sample Number					Collected	Matr	IX		
MW-7			06-03-172	6,1	03/29/06	Aque	ous de la 🖖 🖽		
Comment(s): (1) Results were even	aluated to the N	/IDL, conce	ntrations >	= to the	MDL but <	RL, if found	d, are qualified with	n a "J" flag.	23, (1-2-723) (4-2-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-
Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
Chromium, Hexavalent	1.7	0.2	0.0050	1	В	ug/L	N/A	03/29/06	EPA 218.6
Chloride	44	10	0.055	10		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N)	12	1	0.028	. 10		mg/L	N/A	03/30/06	EPA 300.0
Sulfate	78	10	0.069	10		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/04/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	03/30/06	03/30/06	EPA 376.2
Dissolved Oxygen	7.44	0.01	0.0100	1		mg/L	N/A	03/29/06	SM 4500-O G

MW-5		A SUITE	06-03-172	6-2	03/29/0	3 Aque	ous:		
Comment(s): (1) Results were	evaluated to the N	IDL, conce	ntrations >	= to the	MDL but	RL, if found	d, are qualified with	 n a "J" flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DE.	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
Chromium, Hexavalent	1.8	0.2	0.0050	1	В	ug/L	N/A	03/29/06	EPA 218.6
Chloride	42	10	0.055	10		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N)	. 12	1	0.028	10		mg/L	N/A	03/30/06	EPA 300.0
Sulfate	78	10	0.069	10		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	0.77	2.0	0.59	1	J	ug/L	N/A	04/04/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	03/30/06	03/30/06	EPA 376.2
Dissolved Oxygen	7.26	0.01	0.0100	1		mg/L	N/A	03/29/06	SM 4500-O G

MW-5A	A. A. Crist		06-03-172	6-3	+03/29/0	aupA 6	ous######		
Comment(s): (1) Results were	evaluated to the N	ADL, conce	entrations >	= to the	MDL but	RL, if foun	d, are qualified with	n a "J" flag.	
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent	1.9	0.2	0.0050	1	В	ug/L	N/A	03/29/06	EPA 218.6
Chloride	41	10	0.055	10		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N)	12	1	0.028	10		mg/L	N/A	03/30/06	EPA 300.0
Sulfate	78	10	0.069	10	•	mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	0.75	2.0	0.59	1	J	ug/L	N/A	04/04/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	03/30/06	03/30/06	EPA 376.2
Dissolved Oxygen	7.24	0.01	0.0100	1		mg/L	N/A	03/29/06	SM 4500-O G

DF - Dilution Factor ,

Tetra Tech, Inc.

Date Received:

03/29/06

3475 East Foothill Blvd., Suite 300

Work Order No:

06-03-1726

Pasadena, CA 91107-6024

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Page 2 of 2

Client Sample Number		L	ab Sample	Numbe	r Date Collected	Matri	×		
Method Blank	4.			i.	. NA	Aqueo	ous		and Sales (III)
Comment(s): (1) Results were ev	aluated to the N	MDL, conce	ntrations >	= to the	MDL but < 9	RL, if found	l, are quatified with	n a "J" flag.	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Chromium, Hexavalent (1)	0.13	0.20	0.0050	1	J	ug/L	N/A	03/29/06	EPA 218.6
Chloride (1)	ND	1.0	0.055	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrite (as N) (1)	ND	0.10	0.015	1		mg/L	N/A	03/30/06	EPA 300.0
Nitrate (as N) (1)	ND	0.10	0.028	1		mg/L	N/A	03/30/06	EPA 300.0
Sulfatė (1)	ND	1.0	0.069	1		mg/L	N/A	03/30/06	EPA 300.0
Perchlorate (1)	ND	2.0	0.59	1		ug/L	N/A	04/04/06	EPA 314.0
Sulfide, Total (1)	ND	0.050	0.042	1		mg/L	03/30/06	03/30/06	EPA 376.2

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation:

Method:

03/29/06 06-03-1726 EPA 3005A Filt. EPA 6010B

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	MS/MSD Batch Number
W 5	Aqueous	ICP 3300 1	03/30/06	. 03	/31/06#	060330S04
			-		-	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Antimony	108	112	72-132	4	0-10	
Arsenic	107	111	80-140	4	0-11	
Barium	108	110	87-123	1	0-6	
Beryllium	105	107	89-119	2	0-8	
Cadmium	105	107	82-124	2	0-7	
Chromium	105	108	86-122	2	0-8	
Cobalt	107	105	83-125	2	0-7	
Copper	91	93	78-126	2	0-7	
Lead	105	108	84-120	3	0-7	
Molybdenum	110	113	78-126	3	0-7	
Nickel	100	102	84-120	2	0-7	
Selenium	109	112	79-127	3	0-9	
Silver	104	106	86-128	2	0-7	
Thallium	96	99	79-121	3	0-8	
Vanadium	107	109	88-118	2	0-7	
Zinc	108	106	89-131	2	0-8	

MMM ____

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation:

Method:

03/29/06 06-03-1726 EPA 3005A Filt. EPA 6010B

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix Instrument		Date Prepared		Date nalyzed	MS/MSD Batch Number	
MW-5	Aqueou	IS ICP 3300 :	03/30/06	: // 0	3/31/06	060330504	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Calcium	4X	4X	77-113	4X	0-11	Q	
Magnesium	4X	4X	5 6 -140	4X	0-11	Q	
Potassium	103	109	83-131	3	0-7		
Sodium	4X	4X	73-127	4X	0-9	Q	

RPD - Rela

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation:

Method:

03/29/06 06-03-1726 EPA 3005A Filt. EPA 200.8

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d /	Date Analyzed	MS/MSD Batch Number
MW-5	Aqueou	ICP/MS A	·		03/31/06	060331802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CI	Qualifi <u>ers</u>
Iron Manganese	124 92	129 88	80-120 80-120	4 5	0-20 0-20	3

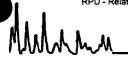
A ha

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/29/06 06-03-1726 EPA 7470A Filt. EPA 7470A

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

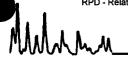
Quality Control Sample ID	Matrix	Instrument	Date Prepared	i A	Date nalyzed	MS/MSD Batch Number
MW-5	Aqueou	s Mercury		0	3/30/06	060329502
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Mercury	90	91	71-134	. 0	0-14	


RPD - Relat

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/29/06 06-03-1726 EPA 3520B EPA 8270C(M) Isotope Dilution

Quality Control Sample ID	Matrix	Instrument	Date Prepared	-	ate alyzed	MS/MSD Batch Number
MW-5	Aqueou	B GC/MS/P	04/03/06	04	06/06	060403510
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
1,4-Dioxane	112	113	50-130	1	0-20	



Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/29/06 06-03-1726 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
Myv-5	Aqueous	GC/MSO	03/30/06		3/31/06	060330802
Express 2007 September 1 - 1000 September 2 - 1000						
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	106	105	88-118	1	0-7	
Carbon Tetrachloride	99	97	67-145	1	0-11	
Chlorobenzene	100	99	88-118	2	0-7	
1,2-Dichlorobenzene	101	103	86-116	2	0-8	
1,1-Dichloroethene	98	98	70-130	0	0-25	
Toluene	114	112	87-123	2	0-8	
Trichloroethene	99	99	79-127	0	0-10	
Vinyl Chloride	100	102	69-129	1	0-13	
Methyi-t-Butyl Ether (MTBE)	103	110	71-131	6	0-13	
Tert-Butyl Alcohol (TBA)	57	73	36-168	24	0-45	
Diisopropyl Ether (DIPE)	116	113	81-123	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	99	105	72-126	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	103	72-126	5	0-12	
Ethanol	97	110	53-149	13	0-31	

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

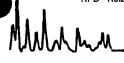
Date Received: Work Order No: Preparation: Method: 03/29/06 06-03-1726 EPA 5030B EPA 8260B

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
06-03-1805-1	Aqueous	GC/MS O	03/31/06		03/31/06	.060331S01;
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	114	111	88-118	3	0-7	
Carbon Tetrachloride	103	98	67-145	5	0-11	
Chlorobenzene	106	103	88-118	3	0-7	
1,2-Dichlorobenzene	109	107	86-116	2	0-8	
1,1-Dichloroethene	101	99	70-130	2	0-25	
Toluene	120	115	87-123	4	0-8	
Trichloroethene	106	102	79-127	3	0-10	
Vinyl Chloride	104	103	69-129	1	0-13	
Methyl-t-Butyl Ether (MTBE)	99	102	71-131	3	0-13	
Tert-Butyl Alcohol (TBA)	62	59	36-168	6	0-45	
Diisopropyl Ether (DIPE)	118	117	81-123	0	0-9	
Ethyl-t-Butyl Ether (ETBE)	113	117	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	117	118	72-126	1	0-12	
Ethanol	109	112	53-149	4	0-31	

Mulha.

Quality Control - Spike/Spike Duplicate



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 03/29/06 06-03-1726 EPA 5030B SRL 524M-TCP

Project BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number
MW-5	Aqueou	s GC/MS M	03/30/06	0:	3/30/06	060330501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
1,2,3-Trichloropropane 1,4-Dioxane	150 95	136 100	80-120 80-120	2 5	0-20 0-20	3

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No:

N/A

06-03-1726

Matrix: Aqueous						ju lin		. įd		
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> Analyzed	<u>Date</u> Extracted	MS% REC	MSD % REC	%REC CL	RPD	RPD CL	Qualifiers
Chloride	EPA 300.0	MW-5	03/30/06	N/A	97	98	56-134	1	0-3	
Nitrite (as N)	EPA 300.0	MW-5	03/30/06	N/A	98	100	68-122	2	0-8	
Nitrate (as N)	EPA 300.0	MW-5	03/30/06	N/A	98	97	58-142	0	0-6	
Sulfate	EPA 300.0	MW-5	03/30/06	N/A	99	100	49-133	0	0-3	
Chromium, Hexavalent	EPA 218.6	MW-5	03/29/06	N/A	110	105	85-121	3	0-4	
Perchlorate	EPA 314.0	MW-5	04/04/06	N/A	117	118	80-120	1	0-15	

Quality Control - Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No:

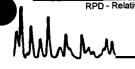
N/A 06-03-1726

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Matrix: Aqueous				4		4		
<u>Parameter</u>	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Dissolved Oxygen Sulfide, Total	SM 4500-O G EPA 376.2	MW-5 MW-5	03/29/06 03/30/06	7.26 ND	7.87 ND	8 NA	0-25 0-25	

RPD - Rela

alscience Invironmental Quality Control - Laboratory Control Sample aboratories, Inc.



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation:

Method:

N/A 06-03-1726 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	ID LCS B	atch Number
097-01-003-5,966 当。此	Aqueous	ICP 3300	03/31/06	060330-1-	14 060	330L04F
<u>Parameter</u>	Con	c Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Antimony	C	.500	0.401	80	80-120	
Arsenic	C	.500	0.430	86	80-120	
Barium	C	.500	0.465	93	80-120	
Beryllium	C	.500	0.456	91	80-120	
Cadmium	C	.500	0.481	96	80-120	
Chromium	C	.500	0.471	94	80-120	
Cobalt	C	.500	0.486	97	80-120	
Copper	C	.500	0.437	87	80-120	
Lead	C	0.500	0.479	96	80-120	
Molybdenum	C	.500	0.484	97	80-120	
Nickel	(.500	0.483	97	80-120	
Selenium	(.500	0.443	89	80-120	
Silver	().250	0.218	87	80-120	
Thallium	().500	0.467	93	80-120	
Vanadium	(0.500	0.459	92	80-120	
Zinc	C).500	0.498	100	80-120	

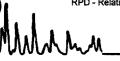
alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:


Preparation:

Method:

N/A 06-03-1726 EPA 3005A Filt.

EPA 6010B

Quality Control Sample ID	Matrix	instrume	nt Date Analyzed	Lab File	ID LCS	Batch Number
097-01-003-5,966	Aqueous	ICP 330	03/31/06	0603304	041 4 0	60330L04F
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Calcium		0.500	0.455	91	80-120	
Magnesium		0.500	0.472	94	80-120	
Potassium		5.00	4.47	89	80-120	
Sodium		5.00	4.52	90	80-120	

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation: Method:

N/A 06-03-1726

EPA 3005A Filt.

EPA 200.8

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-10-008-705	queous:	ICP/MS A	03/31/06 14 (14)	03/31/06	060331L02	112
Parameter	LCS %RE	C LCSD %R	EC %REC	CL RPD	RPD CL Qu	ualifiers
Iron	100	102	85-11	5 2	0-20	
Manganese	100	101	85-11	5 1	0-20	

alscience

nvironmental **Quality Control - Laboratory Control Sample** aboratories, Inc.

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

06-03-1726 EPA 7470A Filt.

EPA 7470A

N/A

Quality Control Sample ID	Matrix	instrument	Date Analyzed	Lab File ID	LCS Batch Number		
099-04-008-2/413	Aqueous	Mercury	03/30/06 0	603294-02-lcp	060329L02Fa		
<u>Parameter</u>	Conc A	dded Conc I	Recovered LCS	6Rec %Rec C	L Qualifiers		
Mercury	0.010	00 0	.00932 93	90-122	2		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation:

N/A 06-03-1726 EPA 3520B

Method:

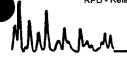
EPA 8270C(M) Isotope Dilution

Quality Control Sample ID	Matrix I	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
099:09-004-560	Aqueous	GC/MS P	04/03/06	04/05/06	060403L10	
<u>Parameter</u>	LCS %REC	LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
1,4-Dioxane	116	104	50-1	30 11	0-20	

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1726 EPA 3520B EPA 1625CM

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

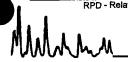
Quality Control Sample ID	Matrix I	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	sh
099-07-027-228: A	queous 🔭 🖟	GC/MS H	04/03/06	04/05/06	060403L03	
<u>Parameter</u>	LCS %REC	C LCSD %F	REC %REC	CL RPD	RPD CL	Qualifiers
N-Nitrosodimethylamine	103	101	50-13	0 2	0-20	


Mhha_

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1726 EPA 5030B EPA 8260B

Quality Control Sample ID				Date Analyzed	LCS/LCSD Bat Number	tch
099-10-006-17,605	Aqueous C	C/MS O	03/30/06	03/30/06	060330L02	
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC C	<u>L RPD</u>	RPD CL	Qualifiers
Benzene	104	105	84-120	1	0-8	
Carbon Tetrachloride	95	96	63-147	2	0-10	
Chlorobenzene	98	98	89-119	0	0-7	
1,2-Dichlorobenzene	102	103	89-119	1	0-9	
1,1-Dichloroethene	96	98	77-125	2	0-16	
Toluene	110	111	83-125	1	0-9	
Trichloroethene	96	99	89-119	3	0-8	
Vinyl Chloride	97	99	63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	87	92	82-118	6	0-13	
Tert-Butyl Alcohol (TBA)	59	64	46-154	9	0-32	
Diisopropyl Ether (DIPE)	108	111	81-123	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	103	109	74-122	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	106	76-124	7	0-10	
Ethanol	91	97	60-138	6	0-32	



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method: N/A 06-03-1726 EPA 5030B EPA 8260B

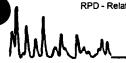
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-10-006-17,512	Aqueous	GC/MS O	AMERICAN THAT ELECTION	03/31/06	060331L01	
Parameter	LCS %RE	C LCSD %I	REC %REC C	CL RPD	RPD CL	Qualifiers
Benzene	107	109	84-120) 1	0-8	
Carbon Tetrachloride	98	99	63-147	, 0	0-10	
Chlorobenzene	101	103	89-119	2	0-7	
1,2-Dichlorobenzene	104	106	89-119	2	0-9	
1,1-Dichloroethene	98	100	77-125	5 1	0-16	
Toluene	114	116	83-125	5 1	0-9	
Trichloroethene	99	101	89-119	2	0-8	
Vinyl Chloride	100	104	63-135	5 3	0-13	
Methyl-t-Butyl Ether (MTBE)	94	103	82-118	3 10	0-13	
Tert-Butyl Alcohol (TBA)	65	71	46-154	8	0-32	
Diisopropyl Ether (DIPE)	110	111	81-123	3 1	0-11	
Ethyl-t-Butyl Ether (ETBE)	102	106	74-122	2 4	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	106	76-124	3	0-10	
Ethanol	102	95	60-138	8	0-32	

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 06-03-1726 EPA 5030B SRL 524M-TCP

Project: BOU Groundwater Monitoring 2006 (PAC Wells) / 17653-06-01

Quality Control Sample ID	Matrix I	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-10-022-246	vdneone : * * * C	GC/MS M	03/30/06	03/30/06	#.060330L01	# 6 H
Parameter	LCS %REC	LCSD %R	EC %REC	CL RPD	RPD CL Q	tualifiers
1,2,3-Trichloropropane 1,4-Dioxane	84 103	84 93	80-12 80-12	•	0-20 0-20	

MMMM_



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No:

N/A 06-03-1726

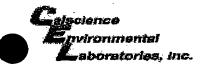
Matrix: Aqueous	1. 1. 1. p. 4. 1. 1.							94		
<u>Parameter</u>	Method	Quality Control Sample ID	<u>Date</u> Extracted	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qual
Chloride	EPA 300.0	099-05-118-3,275	N/A	03/30/06	99	97	81-111	2	0-5	
Nitrite (as N)	EPA 300.0	099-05-118-3,275	N/A	03/30/06	94	92	73-115	2	0-26	
Nitrate (as N)	EPA 300.0	099-05-118-3,275	N/A	03/30/06	95	95	87-111	0	0-12	
Sulfate	EPA 300.0	099-05-118-3,275	N/A	03/30/06	98	97	89-107	0	0-13	
Chromium, Hexavalent	EPA 218.6	099-05-124-453	N/A	03/29/06	97	102	95-107	5	0-20	
Perchlorate	EPA 314.0	099-05-203-392	N/A	04/04/06	114	113	85-115	0	0-15	

Glossary of Terms and Qualifiers

Work Order Number: 06-03-1726

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U .	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

TETRA TECH, INC.
3475 E. FOOTHILL BLVD.
PASADENA, CALIFORNIA 91107
TELEPHONE (626) 351-4664


SHIPPED TO: CALSCIENCE

CHAIN OF CUSTODY RECORD

7440 LINCOLN WAY GARDEN GAOVE CY 92841

DATE 3/29/06 PAGE 1 OF 1

	FAX (626)351-5291					DATE 5/27								00	P	AGE — OF —								
\$	CLIE	NT: LOCKHEED M	ARTIN C	orp			2	EX	TRAC	TION	ANA	YTTC	AL M	ЕТНО	DS.									,
•	PRO	JECT NAME: 2006 F	30U			3	E.	2				<u>a</u>	•											TURN-AROUND TIME
	Gro	rundwater Monitori	ng (PACI	NELLS)	2	¥£	711	3		()		23		3	2000				1			RS		YORMAC OBSERVATIONS
,	TASK MANAGER: Neil Shukla				3	5 5	28	410	1	45		1	3%	弘	₩ ₩		1			1		AINE		OBSERVATIONS ICOMMENTS
•		17597-3.1A			82	P EPA 504.1	Metals B/7000(it 0	-Piokane 8270C-	er ias	rate 14.0) 8 (F	20.08	18 Con 1999	FE				_	ĺ	E III	CONTAINERS		
}	SAN	PLERS (SIGNATURES)	00		EP.	42/2		37	Plokane 8270c-	W	nlor 3	28	Zy y	30	10				MATRIX TYPE	PRESERVATIVE	CONTAINER TYPE			
-	do	mor D. Mikes			្វំខ្	5-1	2 4	Herain EPA 2	2 @ 1 @	3	Perchlos RPA 3	1000	WAAA Catio	28	17			``	¥	BSER	Ž	NÚMBER OF		
	Ľ	SAMPLE NO.	DATE	TIME	<u>₹</u> {	5.2	Trebe EPA 0	Hex EZZ	4.8	N	N III	1015	34	2	Ò		\Box		₹	_	1	1 1		
۱ =	M	w-7		0818	X	X	X	X,	X,	X	X	X,	X	X	X		4		W	103	Gp	13		
Ż		1w-5	3/29/06	1005	X	X	X	X	X	X	X	X	X	X	X							26		MSLHSO
7	1	1W-5A	3/29/06	140	X	X	X	X	X	X	\times	X	X	区	X		_		W	Yes	G/P	13		
`	1	···															_		L	L				
10																				Ŀ				`
) -	Ŀ	·																\bot				ا ا		
3	<u> </u>																				L			
2		·····																						
Ś		•																	L					
4	LI		3/24/06	0600	X	X													W	المحزر	G	2		: 1
Š	40	B-032906A	3/29/06	1200	X	X													W	Me.	6	2		
	MATE	UX TYPE: 8- BOIL CONT. W - WATER T BL - BLUDGE	Ainer G - Glass Ype: 65 - Stainl P - Plasti	BOTTLEVOA ESS STEEL SI C	LEEVE		PRESE	RVATIV		e (NDNI	E REQL	ARED)											mperi Ch do	ATURE BLANK YES NO
3		INQUISHED BY	SIGNATURE		Λl	1	TF	TR	A TI	FCH	I. IN	C		DAT	, ,	15I	E	TOTAL	NUM	BER		~/	_	
	14.	MES O. MIKESELL	SIGNATURE	Millon		1	MPAN						- 13	DATI		TIME	-	OF CO!				2 <u>V</u>		·············
	E	EIVED BY	SIGNATURE	lui	176		MAIL MI		≯Ę	3			7/2	29/		10-	9					c U	φ	
2	REL	NOUISHED BY	SIGNATUR	1 2		,co	MPAN	iy (_			7	DAT	F	TIME		SPECI	L SH	PME				OR STORAGE
		EIVED BY .		2009		╀	MPAN		Ě	_		2	4	ZZX DATI	<u> </u>	TIME	-	REQUIR]
<	13	Jen tame	SIGNATUR		?m	b	747 74	ч т 	(Z	3		3.	29,	O		172			.L NO					

WORK ORDER #:

06-03-0720

Cooler ____ of ____

SAMPLE REC	EIPT FORM								
CLIENT: Setractech	DATE: 3/29/6								
TEMPERATURE - SAMPLES RECEIVED BY:									
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.								
°C Temperature blank.	Initial:								
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not Intact)	Not Applicable (N/A):								
SAMPLE CONDITION:									
Chain-Of-Custody document(s) received with samples									
COMMENTS:									

Tetra Tech Inc. May 2006

1.1 QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

The Quality Assurance/Quality Control (QA/QC) Summary is the relevant QA/QC information associated with the Burbank Operational Unit sampling data set (PACWELLS). The QA/QC Summary contains the following three subjects, which are addressed in detail:

- Data validation concepts, rationale, and practices;
- Data quality objectives, evaluation, and implications; and

1.1.1 SELECTED DEFINITIONS/CRITERIA OF TERMS

1.1.1.1 Holding Times

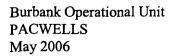
The U. S. Environmental Protection Agency (U.S. EPA) has established maximum time intervals (holding times) between the collection, extraction, and analysis of samples. All compliant results must be obtained within holding times or the results are considered deficient. Samples analyzed outside of holding times must be qualified.

1.1.1.2 Laboratory and Field Blanks

Laboratory and field blanks are samples used to determine if environmental sample results may be positively biased by laboratory or field contamination. Laboratory blank results indicate contamination due to laboratory operations only, while field blank results indicate contamination from field and/or laboratory operations. Laboratory blanks contaminated above the Practical Quantitation Limit (PQL) indicate a need for corrective action.

1.1.1.3 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Matrix spike samples are environmental samples that are spiked with known concentrations of target analytes. The recovery of the target analytes is used to evaluate the effects of the sample matrix. Matrix effects are considered site specific. One MS/MSD sample is analyzed for every 20 environmental samples. The matrix spike duplicate results may be compared to the matrix spike results in order to determine precision.


1.1.1.4 Laboratory Control Sample (LCS)

The LCS determines if the analytical system is in control and consists of reagent grade (analyte free) water spiked with known concentrations of target analytes. Results from the LCS are considered free of any matrix effects and analyte recoveries outside control limits are used to qualify data.

1.1.1.5 Surrogates

For most methods, surrogate compounds are added to every sample at the beginning of sample preparation and are used to monitor the analytical process and give information concerning matrix effects. Surrogate recoveries are the single most useful QC entity for evaluating environmental analytical data. The ubiquitous use of surrogates in the analytical methods has afforded a large database of results from which useful correlated information can be extracted. Surrogates are chemically similar to target analytes and their

Tetra Tech Inc. May 2006

recovery within control limits indicates the process is in control. Surrogates are the primary indicators of matrix effects.

1.1.1.6 Second Column Confirmation

All organic analysis that results in analyte detection should be confirmed in order to have confidence in the result. In the case of gas chromatography/mass spectrometry (GC/MS) analysis, analyte peaks at the correct retention time are confirmed by the mass spectra. For GC or high performance liquid chromatography (HPLC) analysis, a second analytical column and/or a second detector is used for to confirm the presence of the analyte. Unless an analyte is confirmed, its presence cannot be proved.

1.1.1.7 Temperature Blanks

Temperature blanks are placed in coolers with environmental samples in order to determine the temperature of the samples when they arrive at the lab. Temperature blanks typically consist of water in a container similar to the sample containers. Upon receipt at the lab, the temperature blanks are opened and a thermometer is inserted directly into the liquid. Alternatively, the temperature of the samples is measured using an infrared thermometer. The criterion is 4 degrees Celsius, plus or minus 2 degrees. Samples that arrive at the laboratory shortly after sample collection (less than 4 hours) may not have sufficient time for temperature equilibration. In these cases, samples may exceed the upper temperature limit of 6 degrees Celsius, but must be below ambient temperatures.

1.1.1.8 Field Audits

Field audits determine if the sampling procedures used by the field crew are in accordance with standard operating procedures. The techniques used to collect the samples are analyzed to determine if the samples are being collected correctly.

1.1.1.9 Sample Delivery Group (SDG)

The SDG is a laboratory-defined collection of sample results together with the corresponding quality control results. These results are organized under a unique group heading. The laboratory determines the method of grouping the sample results under an SDG and each SDG may contain samples collected at various times and with different matrix types. Generally, each SDG consists of the results for a group of samples received by the laboratory on a single day.

1.1.1.10 Data Gaps

Data gaps may be generated by both field sampling activities and laboratory data problems. Field activities that may produce data gaps include difficulty accessing the sampling location, which results in no sample being collected, or damage and subsequent loss of samples before they reach the laboratory. Laboratory QC errors resulting in data that must be qualified as rejected will also leave data gaps in the analytical results. If necessary, data gaps may be closed quickly by resampling and reanalysis. If the results are not time critical, the gap may be closed during the next quarter of sampling.

1.1.1.11 Corrective Actions

Tetra Tech Inc. May 2006

Corrective actions are performed in response to data or conditions that are not in analytical control. Corrective actions are performed in an attempt to bring the error condition back under control. Corrective actions are documented by a corrective action report (CAR) and are included in the laboratory's SDG data package.

1.1.2 DATA VALIDATION RATIONALE AND GUIDELINES

1.1.2.1 Controlling Documents

The following documents were used for data validation.

- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication OSWER 9240.1-05A-P, EPA-540/R-99/008, October 1999); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (Publication OSWER 9240.1-35, EPA-540/R-01/008, July 2002).

These two documents are hereinafter collectively referred to as the National Functional Guidelines.

1.1.2.2 Data Validation Theory and Matrix Effects

The practice of data validation in the environmental organic chemistry field has been the subject of debate for many years. Determining the validity of environmental data results when matrix effects are suspected is not an exact science, and professional judgment concerning matrix effects is used to help guide the data to its best logical interpretation and evaluation.

The overall QC of environmental sample analysis can be divided into two main categories. These categories are generally considered to be "method QC" and "instrument QC." Both types of QC operate independently to validate the data and qualify the results.

Instrument QC parameters are often well defined and well understood and are based on the tangible physical laws of analytical instrumentation. Instrument QC parameters have to do with (but are not limited to) the calibration, chromatography, and detection aspects of environmental data analysis. Instrument QC parameters are considered independent from a sample's matrix and/or matrix effects.

Conversely, method QC parameters do not yield results that are as well defined, since they are based in part on problems associated with the intangible and/or unknown effects of the sample matrix. Method QC parameters have to do with (but are not limited to) the spiking, extraction, and spike recovery aspects of environmental data analysis. Method QC parameters are considered dependent on a sample's matrix and/or matrix effects.

When evaluating environmental data results with pronounced or unknown matrix effects, a conservative approach to the validation is required. The method QC parameters are rigidly applied and validations are conferred to entire data sets based on one sample's bias.

1.1.2.3 Data Validation Rationale

The National Functional Guidelines were written for use with the Contract Laboratory Program (CLP) methods as outlined in the CLP Statement of Work (SOW). The SOW contains methods for volatile and semivolatile GC/MS analysis, two-column GC pesticide analysis, and inductively coupled plasma (ICP) metal analysis. These methods do not differ significantly in the application of the basic quality control parameters from those found in the corresponding SW846 methods for volatile, semivolatile, pesticide, and ICP metals analyses (hereafter referred to as the SW methods). The target compounds in the CLP are a subset of the SW846 target compounds.

Since the CLP methods and the SW846 methods have similar QC instructions, the *National Functional Guidelines* are usable for the SW methods. In order to validate analytical methods that have no corresponding CLP method validation guidance, logical extrapolations are determined by modeling the pertinent CLP rationale. The resulting validated data have a professional judgment component that allows the validation to be tailored to the individual project. Since the validation of environmental results is not an exact science, interpretive judgments are sometimes required for complex data. After several years of sampling the same wells and analyzing the samples by the same methods for the same analytes, the database of historical results is useful for applying professional judgment to data validation. In an effort to give the AFCEE as much usable data as possible, Tetra Tech uses professional judgment when validating the data and uses the *National Functional Guidelines* as the primary guidance documents for validation purposes.

1.1.2.4 Validation Qualifiers

- B: The sample result is less than 5 times (10 times for common organic laboratory contaminants) the blank contamination. The result is considered not to have originated from the environmental sample, because cross-contamination is suspected.
- J: The analyte was positively identified and the result is usable; however, the analyte concentration is an estimated value.
- R: The sample result is rejected and not usable for any purpose. The presence or absence of the analyte cannot be verified.
- U: The analyte was not detected at or above the reporting detection limit (RDL).
- UJ: The analyte was not detected above the MDL; however, the MDL is uncertain and may be elevated above normal levels.
- Y: Confirmation column results indicate a non-detect for the target analyte.

1.1.2.5 Qualifier Descriptors

- a: The analyte was found in the method blank.
- b: The surrogate spike recovery was outside quality control criteria.
- c: The MS and/or MSD recoveries were outside control limits.
- d: The laboratory control sample recovery was outside control limits.
- e: A holding time violation occurred.
- f: The duplicate/replicate sample's relative percent difference (RPD) was outside the control limit.
- g: The data met prescribed criteria as detailed in the QAPP.
- h: The required second column confirmation was not performed.
- k: The analyte was found in a field blank.
- 1: The second column confirmation result indicates the analyte was not confirmed.
- n: The laboratory case narrative indicated a QC problem.
- p: Professional judgment determined the data should be qualified.
- q: The analyte detection was below the PQL.
- r: The result is above the instrument's calibration range.
- t: The temperature was outside acceptance criteria.

1.1.2.6 Level One Validation Guidelines

Organic Validation Guidelines

Sample Preservation

- As a rule, all samples are required to be preserved at a temperature of 4 degrees Celsius, plus or minus 2 degrees. Additional preservation criteria are method specific. The temperature criterion applies to all samples.
- Samples placed in a cooler and transported directly to the laboratory with short transit times
 (less than 4 hours) do not allow for temperature equilibration. The temperature of samples
 with short transit time must be below ambient temperature with evidence of cooling in
 progress (ice or ice-substitute present).

• Samples with temperatures in excess of six degrees Celsius but less than or equal to 12 degrees Celsius are qualified J for detected analytes and UJ for non-detects.

- Samples in gross excess (>12 degrees) of the temperature criteria are qualified **J** for detected analytes and non-detects are qualified **R**.
- The descriptor **t** is used to indicate sample temperature qualification.

Holding Times

- For volatile organic analyses (VOA) samples, analysis after 14 days (7 days if not pH preserved) from collection are qualified J and UJ.
- For semivolatile (SV) samples, water samples extracted after 7 days (14 days for soil) are qualified J and UJ. Samples analyzed after 40 days from extraction are also qualified J and UJ.
- If holding times are grossly exceeded (greater than 2 times the normal holding time), then positive results are qualified J and non-detects are qualified R.
- The descriptor e is used to denote holding time violations.

Blanks

- Analytes found in associated environmental samples at or below 5 times (10 times common organic analytes) of the method or field blank analyte concentrations are qualified **B**.
- The descriptor **a** is used to indicate method blank contamination.
- The descriptor k is used to indicate field blank contamination.

Surrogates

- For VOA (GC/MS) samples, there are three cases. Any single surrogate failure will cause qualification.
 - Case #1: Recovery above upper limit, then **J** qualify detected analytes. Do not qualify non-detected analytes.
 - Case #2: Recovery between lower limit and 10 percent, then J and UJ.
 - Case #3: Recovery below 10 percent, then J positive results and R non-detects.
- For SV (GC/MS) samples, there are four cases. Except for case four, two surrogate failures (within each fraction) will cause fraction specific qualification.
 - Case #1: Recovery above upper limit, then J only. No UJ.

- Case #2: Recovery between lower limit and 10 percent, then J and UJ.
- Case #3: Recovery of one surrogate above upper limit and one surrogate below the lower limit but above 10 percent, then qualify as in case #2.
- Case #4: Any one surrogate below 10 percent, then **J** positive results and **R** non-detects.
- For SV (GC) samples.
 - Case #1: Recovery above upper limit, then **J** only positive results. Non-detects are not qualified.
 - Case #2: Recovery between lower limit and 10 percent, then **J** positive results. Non-detects are qualified **UJ**.
 - Case #3: Recovery below 10 percent, then J positive results and R non-detects.
- The descriptor **b** is used to indicate surrogate failure qualification.

Laboratory Control Sample

- For laboratory control sample (LCS) qualifications, the specific analytes spiked into the LCS sample must always be qualified. All target analytes are spiked into the LCS.
- For all methods requiring LCS recoveries there are 2 cases.
 - Case #1: LCS recovery is above upper limit, then **J** detected analytes only. Do not qualify non-detects.
 - Case #2: LCS recovery is below lower limit then **J** positive results and **R** non-detects.
- The descriptor **d** is used to indicate LCS qualification.

Matrix Spike/Matrix Spike Duplicates

- The target analytes spiked into the MS/MSD are listed in the project specific OAPP.
- There are two cases for qualification based on the MS/MSD results.
 - Case #1: Non-compliant spike recoveries comprise the first case for qualification based on MS/MSD results. MS and MSD spike recoveries outside of control limits, where the LCS demonstrates that the analytical system was in control, are attributed to the effects of the sample matrix. If both the MS and MSD fail spike recovery criteria as indicated below, qualify based on the least compliant recovery.
 - Recovery above upper limit, then J detected compounds only. Do not

qualify non-detects.

- Recovery between lower limit and 10 percent, then **J** detected compounds and **UJ** non-detects.

- Recovery below 10 percent, then J detected compounds and R nondetects.
- Case #2: Non-compliance of the RPD value is the second case for qualification of data based on the MS/MSD results. MS/MSD RPDs are calculated from the analyte concentrations of the MS and MSD. If the RPD is outside the control limit, the precision is in question, and the accuracy is compromised.
 - RPD outside the control limit, then qualify the related samples with **J** for detected compounds and **UJ** non-detects.
- The descriptor c is used to indicate MS/MSD qualification based on the percent recovery of the spiked analytes.
- The descriptor **f** is used to indicate RPD failure.

Second Column Confirmation

For certain GC or HPLC methods, second column/detector confirmation is required for detected analytes. Refer to the relevant QAPP for method and analyte specific requirements.

Second column results are used to <u>confirm the actual presence or absence of a target analyte</u>. U.S. EPA guidelines state "If the qualitative criteria for both columns were <u>not</u> met, all target compounds that are reported detected should be considered non-detected." Therefore, any compound detection on only one column is not considered a target compound hit.

- For the situation where a compound was detected on the primary column and not detected on the confirmation column, consider the value reported to be not detected. Qualify the result with Y and use the I descriptor.
- In the case of a detection on the primary column where the required second column confirmation was not performed, then qualify the result with **R** and use the **h** descriptor.

Field Duplicate Samples

Field duplicate samples are collected to assess the precision of the sample collection and laboratory analytical process. As a rule, both the sample and its duplicate result must be at or above the PQL in order to calculate a meaningful RPD and if both results are below the PQL the RPD is not calculated. However, if one result is below the PQL (assume zero for a non-detect) and the other result significantly above (10 times) the PQL a RPD is calculated. If the RPD is outside the control limit, the precision is in question, and the accuracy is compromised. The qualification resulting from the sample and its duplicate

non-compliant RPD apply only to the sample and it's duplicate and is analyte specific.

• If the RPD is outside the control limit, then qualify the sample and its duplicate with J for detected compounds and UJ non-detects.

• The descriptor f is used to indicate RPD failure.

Inorganic Validation Guidelines

Sample Preservation

- As a rule, all samples are required to be preserved at a temperature of 4 degrees Celsius, plus or minus 2 degrees. Additional preservation criteria are method-specific. The temperature criterion applies to all samples except ICP metals and mercury in a water matrix, which are exempt from temperature preservation.
- Samples placed in a cooler and transported directly to the laboratory with short transit times (less than 4 hours) do not allow for temperature equilibration. The temperature of samples with short transit time must be below ambient temperature with evidence of cooling in progress (ice or ice-substitute present).
- Samples with temperatures in excess of six degrees Celsius but less than or equal to 12 degrees Celsius are qualified J for detected analytes and UJ for non-detects.
- Samples in gross excess (more than 12 degrees) of the temperature criteria are qualified J
 for detected analytes and non-detects are qualified R.
- The descriptor t is used to indicate sample temperature qualification.

Holding Times

- Holding times are measured from the sampling date.
- Holding times for inorganic compounds vary from 24 hours for analyses such as chromium
 VI and pH to six months for ICP metals. Results produced from analyses performed
 beyond the holding time are qualified as estimated J for detected values and UJ for
 nondetects.
- If holding times are grossly exceeded (greater than 2 times the normal holding time), then positive results are qualified **J** and non-detects are qualified **R**.
- The descriptor e is used to denote holding time violations.

Blanks

Equipment blanks and/or laboratory blanks are evaluated for contaminants.

• Analytes found in associated environmental samples at or below 5 times the blank analyte contamination are qualified **B**.

- Analytes qualified for laboratory blank contamination are denoted with a descriptor **a**.
- Analytes qualified for equipment blank contamination are denoted with a descriptor k.

Laboratory Control Sample

- For LCS qualifications, the specific analytes spiked into the LCS sample must always be qualified. All target analytes are spiked into the LCS.
- LCS recovery is above upper limit then **J** detected analytes only. Do not qualify non-detects.
- LCS recovery is below lower limit then **J** positive results and **R** non-detects.
- Analytes qualified for LCS failure are denoted with a descriptor **d**.

Matrix Spike/Matrix Spike Duplicate

The target analytes spiked into the MS/MSD are listed in the project specific QAPP. Each specific MS or MSD spiking analyte that fails recovery criteria produces qualification of the matching analyte in the site associated environmental samples. Where both the MS and MSD fail criteria, qualify based on the least compliant recovery.

- MS/MSD recovery results are not used for qualification if the analyte concentration in the environmental sample used for the MS/MSD exceeds the spike concentration by a factor of 4 or more.
- If the MS and/or MSD recovery exceed the upper control limit, then **J** detected compounds only. Do not qualify non-detected compounds.
- If the MS and/or MSD recovery falls between the lower limit and 10 percent, then J detected compounds and UJ non-detects.
- If the MS or MSD recovery is less than 10 percent, then J detected analytes and R non-detected analytes.
- The descriptor **c** is used to indicate MS/MSD qualification based on the percent recovery of the spiked analytes.
- MS/MSD RPDs are calculated from the analyte concentrations of the MS and MSD. If the RPD is outside the control limit, the precision is in question, and the accuracy is compromised.
- MS/MSD RPD results are not used for qualification if the analyte concentration in the environmental sample used for the MS/MSD exceeds the spike concentration by a factor of 4 or more.

• RPD outside the control limit, then qualify the related sample results with **J** for detected compounds and **UJ** non-detects.

• The descriptor f is used to indicate RPD failure.

Field Duplicate Samples

Field duplicate samples are collected to assess the precision of the sample collection and laboratory analytical process. As a rule, both the sample and its duplicate result must be at or above the PQL in order to calculate a meaningful RPD and if both results are below the PQL, the RPD is not calculated. However, if one result is below the PQL (assume zero for a non-detect) and the other result significantly above (10 times) the PQL a RPD is calculated. If the RPD is outside the control limit, the precision is in question, and the accuracy is compromised. The qualification resulting from the sample and its duplicate non-compliant RPD apply only to the sample and it's duplicate and is analyte specific.

- If the RPD is outside the control limit, then qualify the sample and its duplicate with J for detected compounds and UJ non-detects.
- The descriptor **f** is used to indicate RPD failure.

1.1.3 SUMMARY OF DATA QUALITY OBJECTIVES AND COMPLIANCE

1.1.3.1 Data Quality Objectives

Data quality objectives (DQOs) are qualitative and quantitative statements developed by data users to specify the quality of data from field and laboratory data collection activities. These DQOs must be carefully designed to support specific decisions or regulatory actions. The DQOs describe which data are needed, why the data are needed, and how the data will be used to address the problem being investigated. DQOs also establish numeric limits for the data to allow the data user to determine whether the data collected are of sufficient quality for use in their intended application.

The usability of the data collected during this investigation depends on its quality. A number of factors relate to the quality of data, and sample collection methods are as important to consider as methods used for sample analysis. Following standard operating procedures for both sample collection and analysis reduces sampling and analytical error. Complete chain-of-custody documentation and adherence to required sample preservation techniques, holding times and proper shipment methods ensure sample integrity. Obtaining valid and comparable data also requires adequate QA/QC procedures and documentation, as well as established detection and control limits.

Quantitation limits are based on the extent to which the field equipment, laboratory equipment, or analytical process can provide accurate measurements of consistent quality for specific constituents in field samples. The quantitation limit for a given analysis will vary depending on instrument sensitivity and matrix effects.

1.1.3.2 Precision, Accuracy, Completeness, and Comparability

The effectiveness of a QA program is measured by the quality of data generated by the laboratory. Data quality is judged in terms of its precision, accuracy, completeness, and comparability. These terms are described as follows:

Accuracy

Accuracy is the degree of agreement of a measurement or average of measurements with an accepted reference or "true" value, and is a measure of bias in the system. The accuracy of a measurement system is impacted by the errors introduced through the sampling process, field contamination, preservation, handling, sample matrix, sample preparation, and analytical techniques.

For this project, laboratory accuracy of the measurement data will be assessed and controlled. Results for blanks, matrix spikes, LCS, and surrogates will be the primary indicators of accuracy. These results will be used to control accuracy by requiring that they meet specified criteria. As spiked samples are analyzed, spike recoveries will be calculated and compared to pre-established acceptance limits.

Acceptance limits are based upon previously established laboratory performance for similar samples. In this approach, the control limits reflect the minimum and maximum recoveries expected for individual measurements for an in-control system. Recoveries outside the established limits indicate some assignable cause, other than normal measurement error, and possible need for corrective action. This includes recalibration of the instrument, reanalysis of the QC sample, reanalysis of the samples in the batch, or flagging the data as suspect if the problems cannot be resolved. For contaminated samples, recovery of matrix spikes may depend on sample homogeneity, matrix interference, and dilution requirements for quantification.

Precision

Precision is a measure of agreement among individual measurements of the same property under prescribed similar conditions. When control limits are established for accuracy, it automatically identifies the precision of the method. In the analysis of samples in a preparation batch, if the recoveries of analytes in the LCS are within the control limits, then the precision is also within limits.

Precision is also determined from duplicate sample analysis and MS/MSD analysis. The precision is quantified by the RPD value calculated from the duplicate results.

Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under correct, normal conditions.

Successful analyses are defined as those where the samples arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody. Furthermore, the sample must be analyzed within the specified holding time and in such a manner that analytical QC criteria described in this document are met.

Factors that adversely affect completeness include:

- Receipt of samples in broken containers;
- Receipt of samples in which chain of custody or sample integrity is compromised in some way;

 Samples received with insufficient volume to perform initial analyses or repeat analyses, if initial efforts do not meet QC acceptance criteria;

- Improperly preserved samples; and
- Samples held in the field or laboratory longer than expected, thereby jeopardizing holding time requirements.

Completeness for the entire project also involves completeness of field and laboratory documentation, whether all samples and analyses specified in the Sampling and Analysis Plan have been processed, and whether the procedures specified in the SAP, Work Plan, and Laboratory Standard Operating Procedures (SOPs) have been implemented.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured through the use of established and approved sample collection techniques and analytical methods, consistency in the basis of analysis (wet or dry weight, volume, etc.), consistency in reporting units, and analysis of standard reference materials.

1.1.3.3 Specific Measurement DQOs for Evaluating Data DQO Compliance

- 1. Precision is expressed in RPD values. Spiked (MS/MSD) and unspiked duplicate field samples are analyzed in order to determine precision.
- 2. Accuracy is expressed as a percentage of the data outside the QC entity's control limits. The percent recoveries from laboratory control sample spikes, matrix spikes and surrogate spikes are used to determine accuracy.

The samples for this data set were examined to determine compliance with the DQOs. The results are listed below.

The following methods analyzed samples for the BOU PACWELLS project and resulted in usable data of known precision and accuracy except as listed below. Several analytes had detections below the PQL and are defined as an estimated value. All of these detections are usable data.

Method E314.0 for Perchlorate

No QC issues were detected.

Method E1625C for low level N-Nitrosodimethylamine

Sample MW-6 had a detection of 170 ng/L and was above the instruments calibration range. The result is qualified as estimated. The datum is usable for its intended purpose.

Method SW8270C SIM for 1,4-Dioxane

No QC issues were detected

Burbank Operational Unit PACWELLS May 2006

Method 524.2 for 1,2,3-Trichloropropane

No QC issues were detected.

Method SW6010B/SW7470A for Title 22 Metals

See Section 1.1.3.7 Blank Contamination below

Method 200.8 for Iron and Manganese

No QC issues were detected.

Method 218.6 for Hexavalent Chromium

No QC issues were detected.

Method SW8260B for Volatile Organic Compounds

Field duplicate RPD values for 1,1-Dichloroethene were qualified as estimated in samples MW-5 and MW-5A. The estimated data is usable for its intended purpose.

See Section 1.1.3.7 Blank Contamination below

Method 300.0 for Common Inorganic Ions

No QC issues were detected.

Method 376.2 for Sulfide

No QC issues were detected.

Method SM 4500-O for Dissolved Oxygen

See Section 1.1.3.6 Holding Times below

1.1.3.4 Completeness

The completeness of this data set was above the DQO criterion of 90 percent. The DQO was satisfied.

1.1.3.5 **Data Gaps**

All data are usable for their intended purpose. No data gaps exist.

1.1.3.6 Holding Times Compliance

All holding times were within criteria except for Dissolved Oxygen results for sample MW-7. Sample MW-7 Dissolved Oxygen result is qualified as estimated. The datum is usable for its intended purpose.

1.1.3.7 Blank Contamination

Method SW6010B samples MW-5, MW-5A, MW-6, MW7, and MW-3 were qualified for method blank contamination for analytes Copper and Molybdenum. The data is generally not usable.

Method SW8260B samples MW-5 and MW-7 were qualified for field blank contamination for Acetone. The data is generally not usable.

Method SW8260B sample MW-8 was qualified for field blank contamination for Methylene Chloride. The data is generally not usable.

1.1.3.8 Other QC Problems

None to report.

From: Origin ID: (610)992-7885

Lisa Hamilton

GE Corporate Environmental Programs 640 Freedom Business Center

2nd Floor

King of Prussia, PA 19406

CLS022306/16/20

SHIP TO: (415)972-3253

BILL SENDER

Rachel Loftin
US EPA Pacific SW Region
75 Hawthorne Street
Superfund Division, SFD-7-4
San Francisco, CA 94105

Ship Date: 31MAY06 ActWgt: 2 LB System#: 1154854/INET2400 Account#: S ********

REF:

Delivery Address Bar Code

STANDARD OVERNIGHT

THU Deliver By:

TRK# **792**

7927 5632 3711

FORM

01JUNÓ6 A1

SFO

, --, -

94105 -CA-US

82 JCCA

Shipping Label: Your shipment is complete

- 1. Use the 'Print' feature from your browser to send this page to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a finely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.